Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=5-8x+x^2=-8x+x^2+6-11\)
\(=\left(x-4\right)^2-11\)
Vì \(\left(x-4\right)^2\ge0\forall x\)\(\Rightarrow\left(x-4\right)^2-11\ge-11\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x-4=0\Leftrightarrow x=4\)
Vậy Amin = - 11 <=> x = 4
\(B=\left(2-x\right)\left(x+4\right)=-x^2-2x+8\)
\(=-\left(x^2+2x+1\right)+9=-\left(x+1\right)^2+9\)
Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+1\right)^2+9\le9\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy Bmax = 9 <=> x = - 1
a) \(F=x^2-8x+28=x^2-8x+16+12\)\(12\)\(=\left(x-4\right)^2+12\)
Vì \(\left(x-4\right)^2\ge0\forall x\)nên F \(\ge\)12
Vậy giá trị nhỏ nhất của F là 12 khi x-4=0 hay x=4
b) \(E=6x-x^2+1=-\left(x^2-6x-1\right)\)\(=-\left(x^2-6x+9-10\right)\)\(=10-\left(x-3\right)^2\)
Vì \(-\left(x-3\right)^2\le0\forall x\)nên E \(\le\)10
Vậy giá trị lớn nhất của E là 10 khi x-3=0 hay x=3
a, F = x2 - 8x + 28
= x2 - 2.x.4 + 42 +12
= (x - 4)2 + 12 >= 12
=>MinF = 12 <=> x = 4
b,E = 6x - x2 + 1
= -( x2 - 6x - 1)
= -( x2 - 2.x.3 + 32 - 8)
= -[(x - 3)2 -8]
= -(x - 3)2 + 8 <= 8
=>MaxE = 8 <=> x = 3
\(B=x^2+8x+16-16\)
\(B=\left(x+4\right)^2-16\)
có : \(\left(x+4\right)^2\ge0\Rightarrow\left(x+4\right)^2-16\ge-16\)
\(\Rightarrow B\ge-16\)
Dấu "=" xảy ra khi
(x + 4)2 = 0 => x + 4 = 0 => x = - 4
vậy Min B = -16 khi x = -4
\(B=x^2+8x\)
\(=x^2.2.x.4+16-16\)
\(=\left(x+4\right)^2-16\)
Vì \(\left(x+4\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x+4\right)^2-16\ge0-16;\forall x\)
Hay\(B\ge-16;\forall x\)
Dấu "=" xảy ra\(\Leftrightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Vậy MIN B= -16 \(\Leftrightarrow x=-4\)
A = x2 + 4x + 7
= ( x2 + 4x + 4 ) + 3
= ( x + 2 )2 + 3
( x + 2 )2 ≥ 0 ∀ x => ( x + 2 )2 + 3 ≥ 3
Đẳng thức xảy ra <=> x + 2 = 0 => x = -2
=> MinA = 3 <=> x = -2
B = 2x2 - 6x
= 2( x2 - 3x + 9/4 ) - 9/2
= 2( x - 3/2 )2 - 9/2
2( x - 3/2 )2 ≥ 0 ∀ x => 2( x - 3/2 )2 -9/2 ≥ -9/2
Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2
=> MinB = -9/2 <=> x = 3/2
C = -2x2 + 8x - 15
= -2( x2 - 4x + 4 ) - 7
= -2( x - 2 )2 - 7
-2( x - 2 )2 ≤ 0 ∀ x => -2( x - 2 )2 - 7 ≤ -7
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> MaxC = -7 <=> x = 2
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1≥0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967≥0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2≤0+21=21
Dấu = khi x+4=0 <=>x=-4
Bài 1:
c)C=x2+5x+8
=x2+5x+\(\left(\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)
=\(\left(x+\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)\(\ge\dfrac{7}{4}\)
Vậy \(C_{min}=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{5}{2}\)
GTNN :
B=4x2+4x+11
= (2x)2+2*x*2+22+7
=(2x+2)2+7>= 7
dấu ''='' sảy ra khi 2x+2=0
=> x = -1
vậy GTNN của biểu thức B là 7 tại x = -1
\(B=4x^2+4x+11\)
\(=4x^2+4x+1+10\)
\(=\left(2x+1\right)^2+10\ge10\)
Dau "=" xay ra <=> \(x=-\frac{1}{2}\)
Vay.....
\(-3x^2+8x-1=\left(-3\right)\left(x^2-\frac{8}{3}x+\frac{1}{3}\right)=\left(-3\right)\left[\left(x^2-2.\frac{4}{3}.x+\frac{16}{9}\right)-\frac{13}{9}\right]\)
\(=\left(-3\right)\left[\left(x-\frac{4}{3}\right)^2-\frac{13}{9}\right]=\frac{13}{3}-3\left(x-\frac{4}{3}\right)^2\le\frac{13}{3}\)
Biểu thức đạt GTLN là 13/3 khi \(\left(x-\frac{4}{3}\right)^2=0\Leftrightarrow x-\frac{4}{3}=0\Leftrightarrow x=\frac{4}{3}\)
Nhớ cho 5 sao luôn nhé
Ta có: \(4x^2-8x+7=4x^2-8x+4+3\left(2x-2\right)^2+3\ge3\)
\(\Rightarrow B>0\)
Vậy B có GTLN \(\Leftrightarrow\left(2x-2\right)^2+3\)có GTNN
Mà \(\left(2x-2\right)^2+3\ge3\Rightarrow Min\left(4x^2=8x+7\right)=3\Leftrightarrow2x-2=0\Leftrightarrow x=1\)
\(\Rightarrow\)Max B = 3\(\Leftrightarrow x=1\)
\(8x-x^2+9\)
\(=-x^2+8x+9=-x^2+8x-16+25=-\left(x^2-8x+16\right)+25=-\left(x-4\right)^2+25\)
Ta có: \(-\left(x-4\right)^2\le0\forall x\Rightarrow-\left(x-4\right)^2+25\le25\forall x\)
Dấu '' = '' xảy ra khi: \(\left(x-4\right)^2=0\Rightarrow x-4=0\Rightarrow x=4\)