Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
ĐIều kiện (1)\(\Delta>0\Rightarrow\left(m+3\right)^2-4\left(m^2-1\right)\left(m^2+m\right)>0\)
ĐK(2) c/a <0 => (m^2+m)/(m^2-1) <0
Không cần giải đk (1) vì nếu (m) thủa mãn đk(2) tất nhiên thỏa mãn đk(1) do (x+3)^2 >=0
\(\dfrac{m^2+m}{m^2-1}=\dfrac{T}{M}\)
\(-1< m< 0\Rightarrow T< 0\)
\(-1< m< 1\Rightarrow M< 0\)
Để thủa mãn đk (2) cũng là giá trị m cần tìm là: \(\Rightarrow0< m< 1\)
b)
M thả mãn hệ \(\left\{{}\begin{matrix}\left(m^3+m-2\right)^2-4\left(m^2+m-5\right)\left(1\right)\\\left(m^2+m-5\right)< 0\left(2\right)\end{matrix}\right.\)
Tưng tự câu (a) Nếu (2) thủa mãn => ( 1) thỏa mãn
=> \(\left(2\right)\Rightarrow\dfrac{-1-\sqrt{21}}{2}< m< \dfrac{-1+\sqrt{21}}{2}\) cũng là giá trị m cần tìm
a) \(x^2-2x+m^2+m+3=0\)
Xét \(\Delta=1^2-\left(m^2+m+3\right)=-\left(m^2+m+2\right)=\)
\(=-\left(m+\dfrac{1}{2}\right)^2-\dfrac{7}{4}< 0\) với mọi m.
DO đó phương trình luôn vô nghiệm nên không có giá trị nào thỏa mãn.
b)
(1) a khác 0: \(m^2+m+3>0\forall m\)
(2) \(\Delta>0\Rightarrow\left(4m^2+m+2\right)^2-4m\left(m^2+m+3\right)>0\)
\(=16m^4+4m^3+13m^2-8m+4>0\)
(3) \(\dfrac{c}{a}>0\) => m > 0
(4) \(-\dfrac{b}{a}\) \(< 0\) \(\Leftrightarrow\)\(4m^2+m+2< 0\Rightarrow4\left(m+\dfrac{1}{8}\right)^2+\dfrac{31}{16}< 0\) vô lý
Kết luận không có m thỏa mãn đk đầu bài
a)pt vô nghiệm khi và chỉ khi:
\(\Delta'< 0\)\(\Leftrightarrow\left(2m-3\right)^2-\)\(\left(5m-6\right)\left(m-2\right)>0\Leftrightarrow-m^2+4m+21>0\Leftrightarrow m>-3\)và \(m< 7\) (xét dấu tam thức bậc hai)
b) Tương tự câu a
a) Để phương trình có hai nghiệm trái dấu khi và chỉ khi: \(ac< 0\Leftrightarrow2\left(m+2\right)< 0\)\(\Leftrightarrow m+2< 0\)\(\Leftrightarrow m< -2\). (1)
Tổng hai nghiệm đó bằng - 3 khi và chỉ khi:
\(x_1+x_2=\dfrac{2m+1}{m+2}=-3\)
\(\Rightarrow2m+1=3\left(m+2\right)\)\(\Leftrightarrow m=-5\)
Kết hợp với điều kiện (1) ta được \(m=-5\) là giá trị cần tìm.
b) Phương trình có nghiệm kép khi và chỉ khi:
\(\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m+2\ne0\\\left(2m+1\right)^2-4.2.\left(m+2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-2\\4m^2-4m-15=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-2\\\left[{}\begin{matrix}m=\dfrac{5}{2}\\m=-\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
Vậy \(m=\dfrac{5}{2}\) hoặc \(m=-\dfrac{3}{2}\) là giá trị cần tìm.
1.
\(f\left(x\right)=\frac{x-3}{2}+\frac{18}{x-3}+\frac{3}{2}\ge2\sqrt{\frac{18\left(x-3\right)}{2\left(x-3\right)}}+\frac{3}{2}=\frac{15}{2}\)
Dấu "=" xảy ra khi \(\left(x-3\right)^2=36\Rightarrow x=9\)
2.
Để pt có 2 nghiệm trái dấu
\(\Leftrightarrow ac< 0\Leftrightarrow m^2-4m< 0\Rightarrow0< m< 4\)
3.
\(\left|3x+1\right|>2\Rightarrow\left[{}\begin{matrix}3x+1>2\\3x+1< -2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x>\frac{1}{3}\\x< -1\end{matrix}\right.\)
\(m^2\left(x-1\right)+x-3< 0\Leftrightarrow\left(m^2+1\right)x-m^2-3< 0\)
Đặt \(f\left(x\right)=\left(m^2+1\right)x-m^2-3\)
\(f\left(x\right)< 0\forall x\in\left[-5;2\right]\Leftrightarrow\hept{\begin{cases}f\left(-5\right)< 0\\f\left(2\right)< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}-6m^2-8< 0\\m^2-1< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6m^2+8>0\\m^2< 1\end{cases}}\Leftrightarrow\left|m\right|< 1\Leftrightarrow-1< m< 1\)
Vậy có duy nhất 1 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán, đó là giá trị m = 0
Pt đã cho có 2 nghiệm trái dấu khi và chỉ khi:
\(ac< 0\Leftrightarrow1\left(m^2-4m\right)< 0\)
\(\Leftrightarrow0< m< 4\)
cảm ơn nhìu ạ !