
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Số cần tìm chia cho \(2,5,9\)đều dư \(1\)nên khi chia cho \(2\times5\times9=90\)cũng dư \(1\).
Nên số cần tìm có thể là: \(91,181,271,361,...\)
Ta thấy trong các số trên số nhỏ nhất chia cho \(7\)dư \(6\)là \(181\)
Do đó số cần tìm là \(181\).

\(X-\frac{2}{3}=\frac{1}{2}+\frac{1}{6}+...+\frac{1}{9900}\)
\(=>X-\frac{2}{3}=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=>X-\frac{2}{3}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=>X-\frac{2}{3}=1-\frac{1}{100}\)
\(=>X-\frac{2}{3}=\frac{100}{100}-\frac{1}{100}\)
\(=>X-\frac{2}{3}=\frac{99}{100}\)
\(=>X=\frac{99}{100}+\frac{2}{3}\)
\(=>X=\frac{497}{300}\)
Lưu ý: dấu chấm thay dấu nhân
\(x-\frac{2}{3}=\frac{1}{2}+\frac{1}{6}+...+\frac{1}{9900}\)
Tổng vế phải gồm : \(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{9900}\)
\(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{9900}=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{98}-\frac{1}{99}\right)+\left(\frac{1}{99}-\frac{1}{100}\right)\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{100}{100}-\frac{1}{100}\)
\(=\frac{99}{100}\)
Với vế trái, ta có : \(x-\frac{2}{3}=\frac{99}{100}\)
\(x-\frac{2}{3}=\frac{99}{100}\)
\(x=\frac{99}{100}+\frac{2}{3}\)
\(x=\frac{497}{300}\)

A = \(\dfrac{1}{12}\)+ \(\dfrac{1}{20}\)+ \(\dfrac{1}{30}\)+...+\(\dfrac{1}{9900}\)
A = \(\dfrac{1}{3\times4}\)+ \(\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+...+\dfrac{1}{99\times100}\)
A = \(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
A = \(\dfrac{1}{3}\) - \(\dfrac{1}{100}\)
A = \(\dfrac{97}{300}\)
Lời giải:
Gọi tổng trên là $A$
$A=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{99.100}$
$=\frac{4-3}{3.4}+\frac{5-4}{4.5}+\frac{6-5}{5.6}+...+\frac{100-99}{99.100}$
$=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}$
$=\frac{1}{3}-\frac{1}{100}=\frac{97}{300}$

1/2 + 1/6 + 1/12 + 1/20 + ... + 1/9900
= 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + ... + 1/99.100
= 1 - 1/2 + 1/2 - 1/2 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/99 - 1/100
= 1 - 1/100
= 99/100
Mk nhanh nhất đó
Đúng 100%
Tk mk mk tk lại
Cảm ơn bạn nhiều
Thank you very much
( ^ _ ^ )
99/100
Buổi chiều hôm nay cô giáo mới dạy cho mình mà nên mình chắc chắn 100%

ta có:
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
\(=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{98x99}+\frac{1}{99x100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
\(n=\frac{1}{2}\) \(+\frac{1}{6}\) \(+\frac{1}{12}\) \(+\frac{1}{20}\) \(+...+\frac{1}{9900}\)
\(n=\frac{1}{1.2}\) \(+\frac{1}{2.3}\) \(+\frac{1}{3.4}\) \(+\frac{1}{4.5}\) \(+...+\frac{1}{99.100}\)
\(n=1-\frac{1}{2}\) \(+\frac{1}{2}\) \(-\frac{1}{3}\) \(+\frac{1}{3}\) \(-\frac{1}{4}\) \(+\frac{1}{4}\) \(-\frac{1}{5}\) \(+...+\frac{1}{99}\) \(-\frac{1}{100}\)
\(n=1-\frac{1}{100}\)
\(n=\frac{99}{100}\)
#Ye Chi-Lien