Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tìm số tự nhiên nhỏ nhất sao cho khi chia số đó cho 3,4,5 đều dư 1và chia cho 7 thì không dư
Gọi số đó là x
Ta có: x - 1 ∈ BC(3; 4; 5) = {0; 60; 120; 180; 240; 300; ...}
=> x ∈ {1; 61; 121; 181; 241; 301 ...}
Vì x chia hết cho 7 => x = 301
b) Tìm số tự nhiên a nhỏ nhất sao cho a chia cho 2 dư 1,chia cho 5 dư 1,chia cho 7 dư 3,chia hết cho 9
Ta có: a chia 2 dư 1
a chia 5 dư 1
a chia 7 dư 3
a chia hết cho 9
=> a chia hết cho 3; 6; 9; 10
Ta có: 2 + 1 = 3
6 + 1 = 6
7 + 3 = 10
=> a nhỏ nhất
=> a thuộc BCNN(3; 6; 9; 10)
Ta có: 3 = 3
6 = 2 . 3
9 = 3^2
10 = 2 . 5
=> BCNN(3; 6; 9; 10) = 3^2 . 2 . 5 = 90
=> a = 90
phân tích từng số thành thừa số nguyên tố rồi tính .
VD: 1 :
4=22 ;;;6=2.3;;; 8=23 ;;;; 10 = 2.5 ;;;; 12 =22.3
=> BCNN(4;6;8;10;12)=23.3.5=`10
Số cần tìm chia cho \(2,5,9\)đều dư \(1\)nên khi chia cho \(2\times5\times9=90\)cũng dư \(1\).
Nên số cần tìm có thể là: \(91,181,271,361,...\)
Ta thấy trong các số trên số nhỏ nhất chia cho \(7\)dư \(6\)là \(181\)
Do đó số cần tìm là \(181\).