Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2(m-1)x+3=2m-5
=>x(2m-2)=2m-5-3=2m-8
a: (1) là phương trình bậc nhất một ẩn thì m-1<>0
=>m<>1
b: Để (1) vô nghiệm thì m-1=0 và 2m-8<>0
=>m=1
c: Để (1) có nghiệm duy nhất thì m-1<>0
=>m<>1
d: Để (1) có vô số nghiệm thì 2m-2=0 và 2m-8=0
=>Ko có m thỏa mãn
e: 2x+5=3(x+2)-1
=>3x+6-1=2x+5
=>x=0
Khi x=0 thì (1) sẽ là 2m-8=0
=>m=4
a)Thay m=-1 vào phương trình ta đc:
\(4.\left(-1\right)^2.x-4x-3.\left(-1\right)=3\)
\(\Leftrightarrow4x-4x+3=3\)
\(\Leftrightarrow0x=0\)(Luôn đúng)
\(\Leftrightarrow\)Pt có vô số nghiệm
Vậy pt có vô số nghiệm.
b)Thay x=2 vào phương trình ta có:
\(4m^2.2-4.2-3m=3\)
\(\Leftrightarrow8m^2-8-3m=3\)
\(\Leftrightarrow8m^2-3m-11=0\)
\(\Leftrightarrow8m^2+8m-11m-11=0\)
\(\Leftrightarrow8m\left(m+1\right)-11\left(m+1\right)=0\)
\(\Leftrightarrow\left(m+1\right)\left(8m-11\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m+1=0\\8m-11=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m=-1\\m=\frac{11}{8}\end{cases}}\)
Vậy tập nghiệm của pt là S={-1;\(\frac{11}{8}\)}
c)Ta có:
\(5x-\left(3x-2\right)=6\)
\(\Leftrightarrow5x-3x+2=6\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)
Có x=2 là nghiệm của pt \(5x-\left(3x-2\right)=6\)
Để \(4m^2x-4x-3m=3\Leftrightarrow5x-\left(3x-2\right)=6\)
\(\Leftrightarrow\)x=2 là nghiệm của \(4m^2x-4x-3m=3\)
Thay x=2 vào pt trên ta đc:
\(4m^2.2-4.2-3m=3\)(Giống câu b)
Vậy m=-1,m=11/8...
d)Có:\(4m^2x-4x-3m=3\)
\(\Leftrightarrow4x\left(m^2-1\right)=3+3m\)
Để pt vô nghiệm
\(\Leftrightarrow\hept{\begin{cases}m^2-1=0\\3+3m\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m=\pm1\\m\ne-1\end{cases}}\)
\(\Leftrightarrow m=1\)
Vậy m=1 thì pt vô nghiệm.
3/(x^2-13x+40)+2/(x^2-8x+15)+1/(x^2-5x+6)+6/5+0
3/(x-8)(x-5)+2/(x-5)(x-3)+1/(x-3)(x-2)+6/5=0
1/(x-8)-1/(x-5)+1/(x-5)-1/(x-3)+1/(x-3)-1/(x-2)+6/5=0
1/(x-8)-1/(x-2)+6/5=0
ban tu giai tiep nhan
m^2x+2x=5-3mx
m^2x+3mx+2x=5
x(m^2+3m+2)=5
khi 0x=5 thi pt vo nghiem
m^2+3m+2=0
(m+1)(m+2)=0
m=-1 hoac m=-2
Bài làm
m2x - 4x = 5 - 3mx
<=> m2x - 4x + 3mx = 5
<=> x( m2 - 4 + 3m ) = 5
Để phương trình m2x - 4x = 5 - 3mx vô nghiệm thì:
m2 - 4 + 3m = 0
<=> m2 - 3 - 1 + 3m = 0
<=> ( m2 - 1 ) - 3( 1 - m ) = 0
<=> ( m - 1 )( m + 1 ) - 3( 1 - m ) = 0
<=> ( 1 - m )( -m - 1 ) - 3( 1 - m ) = 0
<=> ( 1 - m )( -m - 1 - 3 ) = 0
<=> ( 1 - m )( -m - 4 ) = 0
<=> \(\orbr{\begin{cases}1-m=0\\-m-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}m=1\\-m=4\end{cases}\Leftrightarrow\orbr{\begin{cases}m=1\\m=-4\end{cases}}}}\)
Vậy để thương trình trên vô nghiệm thì m = 1 hoặc m = -4
# Học tốt #
a, m\(x\) -2\(x\) + 3 = 0
Với m = -4 ta có :
-4\(x\) - 2\(x\) + 3 = 0
-6\(x\) + 3 = 0
6\(x\) = 3
\(x\) = 3 : 6
\(x\) = \(\dfrac{1}{2}\)
b, Vì \(x\) = 2 là nghiệm của phương trình nên thay \(x\) = 2 vào phương tình ta có : m.2 - 2.2 + 3 = 0
2m - 1 = 0
2m = 1
m = \(\dfrac{1}{2}\)
c, m\(x\) - 2\(x\) + 3 = 0
\(x\)( m -2) + 3 = 0
\(x\) = \(\dfrac{-3}{m-2}\)
Hệ có nghiệm duy nhất khi m - 2 # 0 => m#2
d, Để phương trình có nghiệm nguyên thì: -3 ⋮ m -2
m - 2 \(\in\) { - 3; -1; 1; 3}
m \(\in\) { -1; 1; 3; 5}
Lời giải:
Ta có: \(m^2x+2x=5+3mx\)
\(\Leftrightarrow x(m^2+2-3m)=5\)
Để PT trên vô nghiệm thì \(m^2-3m+2=0\)
\(\Leftrightarrow (m-1)(m-2)=0\)
\(\Leftrightarrow \left[\begin{matrix} m=1\\ m=2\end{matrix}\right.\)
Vậy \(m\in\left\{1;2\right\}\)
m lũy thừa 2x hả bạn? cái dạng này tớ biết sơ sơ nà, cơ mà bạn ghi đề khó hiểu quá
ta có m2x + 2x = 5 + 3m
<=> m2x + 2x - 3m = 5
<=> (m2 + 2 -3m)x = 5
<=> (m2 - m + 2m + 2)x = 5
<=> (m-1)(m+2)x = 5
* Nếu m khác 1 và m khác -2 thì x = \(\frac{5}{\left(m-1\right)\left(m+2\right)}\)
* Nếu m = 1 thì 0x = 5 => Phương trình vô nghiệm
* Nếu m = -2 thì 0x = 5 => phương trình vô nghiệm
Vậy m = {-2;1} thì phương trình vô nghiệm