\(4m^2x-4x-3m=3\)

Tìm giá trị của m để pt có nghiệm dương

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2020

a)Thay m=-1 vào phương trình ta đc:

\(4.\left(-1\right)^2.x-4x-3.\left(-1\right)=3\)

\(\Leftrightarrow4x-4x+3=3\)

\(\Leftrightarrow0x=0\)(Luôn đúng)

\(\Leftrightarrow\)Pt có vô số nghiệm

Vậy pt có vô số nghiệm.

b)Thay x=2 vào phương trình ta  có:

\(4m^2.2-4.2-3m=3\)

\(\Leftrightarrow8m^2-8-3m=3\)

\(\Leftrightarrow8m^2-3m-11=0\)

\(\Leftrightarrow8m^2+8m-11m-11=0\)

\(\Leftrightarrow8m\left(m+1\right)-11\left(m+1\right)=0\)

\(\Leftrightarrow\left(m+1\right)\left(8m-11\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}m+1=0\\8m-11=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}m=-1\\m=\frac{11}{8}\end{cases}}\)

Vậy tập nghiệm của pt là S={-1;\(\frac{11}{8}\)}

c)Ta có:

\(5x-\left(3x-2\right)=6\)

\(\Leftrightarrow5x-3x+2=6\)

\(\Leftrightarrow2x=4\)

\(\Leftrightarrow x=2\)

Có x=2 là nghiệm của pt \(5x-\left(3x-2\right)=6\)

Để \(4m^2x-4x-3m=3\Leftrightarrow5x-\left(3x-2\right)=6\)

\(\Leftrightarrow\)x=2 là nghiệm của \(4m^2x-4x-3m=3\)

Thay x=2 vào pt trên ta đc:

\(4m^2.2-4.2-3m=3\)(Giống câu b)

Vậy m=-1,m=11/8...

d)Có:\(4m^2x-4x-3m=3\)

\(\Leftrightarrow4x\left(m^2-1\right)=3+3m\)

Để pt vô nghiệm

\(\Leftrightarrow\hept{\begin{cases}m^2-1=0\\3+3m\ne0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m=\pm1\\m\ne-1\end{cases}}\)

\(\Leftrightarrow m=1\)

Vậy m=1 thì pt vô nghiệm.

26 tháng 3 2020

a, \(4.\left(-1\right)^2.x-4x-3.\left(-1\right)=3\)

\(\Leftrightarrow4x-4x+3=3\)

\(\Leftrightarrow4x=4x\)

Vậy phương trình đúng với mọi x.

b, \(4.m^2.2-4.2-3m=3\)

\(\Leftrightarrow8m^2-3m-8=3\)

\(\Leftrightarrow8m^2-3m-11=0\)

\(\Leftrightarrow8m^2+8m-11m-11=0\)

\(\Leftrightarrow8m\left(m+1\right)-11\left(m+1\right)=0\)

\(\Leftrightarrow\left(m+1\right)\left(8m-11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m+1=0\\8m-11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=\frac{11}{8}\end{matrix}\right.\)

Vậy....

15 tháng 4 2020

\(3-m=\frac{10}{x+2}\)

\(\Leftrightarrow\left(3-m\right)\left(x+2\right)=10\)

=> 3-m và x+2 thuộc Ư (10)={1;2;5;10}

TH1: \(\hept{\begin{cases}3-m=1\\x+2=10\end{cases}\Leftrightarrow\hept{\begin{cases}m=2\\x=8\end{cases}}}\)hoặc \(\hept{\begin{cases}3-m=10\\x+2=1\end{cases}\Leftrightarrow\hept{\begin{cases}m=-7\\x=1\end{cases}}}\)

TH2: \(\hept{\begin{cases}3-m=5\\x+2=2\end{cases}\Leftrightarrow\hept{\begin{cases}m=-2\\x=0\end{cases}}}\)hoặc \(\hept{\begin{cases}3-m=2\\x+2=5\end{cases}\Leftrightarrow\hept{\begin{cases}m=1\\x=-3\end{cases}}}\)(loại)

15 tháng 4 2020

bài 3:

\(A=\frac{2x^3-6x^2+x-8}{x-3}\left(x\ne3\right)\)

\(\Leftrightarrow A=\frac{\left(2x^3-6x^2\right)+\left(x-8\right)}{x-3}=\frac{2x\left(x-3\right)+\left(x-8\right)}{x-3}=2x+\frac{x-8}{x-3}\)

Để A nguyên thì \(\frac{x-8}{x-3}\)nguyên 

Có: \(\frac{x-8}{x-3}=\frac{x-3-5}{x-3}=1-\frac{5}{x-3}\)

Vì x nguyên => x-3 nguyên => x-3 \(\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Ta có bảng

x-3-5-115
x-2248
23 tháng 5 2018

1) \(a=1,b^,=\frac{-2\left(m-1\right)}{2},c=m^2-3m.\)

\(\Delta^'=b^2-ac\Leftrightarrow\Delta^'=\left(-\left(m-1\right)\right)^2-\left(m^2-3m\right)\)

\(=m^2-2m+1-m^2+3m=m+1\)

vậy để pt có nghiệm thì  \(\Delta^'\ge0\Leftrightarrow m\ge-1\)

2)  

a) \(A^2=\left(|x1+x2|\right)^2=x_1^2+x_2^2+2|x_1x_2|\)

     \(A^2=\left(x_1+x_2\right)^2+2|x1x2|-2x_1x_2\)

ap dụng vi ét ta có 

         \(A^2=4\left(m-1\right)^2+2|m^2-3m|-2\left(m^2-3m\right)\)

         \(A^2=4m^2-8m+1-2m^2+6m+2|m^2-3m|\)

          \(A^2=2m^2-2m+1+2|m^2-3m|\)

           \(A=\sqrt{2m^2-2m+1+2|m^2-3m|}\) \(dk;;m\ge-1\)

B) \(\text{|}x_1-x_2\text{|}=\sqrt{\left(x_1-x_2\right)^2}\) " phá căn bậc thì cũng phải phá trị tuyệt đối " " tự chức minh "

  \(B=\sqrt{x_1^2+x_2^2-2x_1x_2}\)   

\(x^2_1+x^2_2=\left(x_1+x_2\right)^2-2x_1x_2\)

ap dụng vi ét ta có  \(4\left(m-1\right)^2-2m^2+6m=4m^2-8m+4-2m^2+6m=2m^2-2m+4\)

\(-2x_1x_2=-2m^2+6m\)

\(B=\sqrt{2m^2-2m+4-2m^2+6m}=\sqrt{4m+4}=2\sqrt{m+1}\)

             "dk m >= -1"

30 tháng 4 2018

a/ \(\Delta=9m^2-12m+16=\left(3m-2\right)^2+12\ge12>0\forall m\)

b/ để pt có 1 nghiệm <=> Δ = 0

<=> 9m^2-12m+16 = 0 ???

c/ x1= \(\sqrt{4+2\sqrt{3}}\) là nghiệm pt

=> \(4+2\sqrt{3}-3m\cdot\sqrt{4+2\sqrt{3}}+3m-4=0\Leftrightarrow m=\dfrac{2}{3}\)

thay m = 2/3 vào pt ta được:

\(x^2-3\cdot\dfrac{2}{3}x+3\cdot\dfrac{2}{3}-4=x^2-2x-2=0\)

viet: \(x1+x2=2\)

=> x2 = 2 - \(\sqrt{4+2\sqrt{3}}=1-\sqrt{3}\)