Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{a) }\dfrac{1}{\sqrt{x-1}}\\ \text{Để biểu thức có nghĩa }\\ thì\Rightarrow\left\{{}\begin{matrix}x-1\ge0\\\sqrt{x-1}\ne0\end{matrix}\right.\\ \Rightarrow x-1>0\\ \Rightarrow x>1\)
\(\text{b) }\dfrac{1}{\sqrt{x-\sqrt{2x-1}}}\\ \text{Để biểu thức có nghĩa }\\ thì\Rightarrow\left\{{}\begin{matrix}x-\sqrt{2x-1}\ge0\\\sqrt{x-\sqrt{2x-1}}\ne0\end{matrix}\right.\\ \Rightarrow x-\sqrt{2x-1}>0\\ \Rightarrow x>\sqrt{2x-1}\\ \Rightarrow x^2>2x-1\\ \Rightarrow x^2-2x+1>0\\ \Rightarrow\left(x-1\right)^2>0\\ \Rightarrow\left|x-1\right|>0\\ \Rightarrow\left[{}\begin{matrix}x-1< 0\\x-1>0\end{matrix}\right.\\ \Rightarrow x-1\ne0\\ \Rightarrow x\ne1\)
\(c\text{) }\sqrt{-\dfrac{1}{x}}\\ \text{Để biểu thức có nghĩa }\\ thì\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{x}\ge0\\x\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}< 0\\x\ne0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x< 0\left(\text{Vì }1>0\right)\\x\ne0\end{matrix}\right.\Rightarrow x< 0\)
\(\text{d) }\sqrt{\dfrac{a+1}{a^2}}\\ \text{Để biểu thức có nghĩa }\\ thì\Rightarrow\left\{{}\begin{matrix}\dfrac{a+1}{a^2}\ge0\\a^2\ne0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}a+1\ge0\left(\text{Vì }a^2>0\right)\\a\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a\ge-1\\a\ne0\end{matrix}\right.\)
\(\dfrac{\sqrt{x-1}}{x^2}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x-1\ge0\\x^2\ne0\end{matrix}\right.\Leftrightarrow x\ge1\)
\(\sqrt{\dfrac{x}{\left(x-1\right)^2}}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x-1\ne0\end{matrix}\right.\) \(\Leftrightarrow x\ge0\)
\(\sqrt{x+5}-\sqrt{2x+1}\)
ĐKXĐ:\(\left\{{}\begin{matrix}x+5\ge0\\2x+1\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-5\\x\ge\dfrac{-1}{2}\end{matrix}\right.\)\(\Leftrightarrow x\ge\dfrac{-1}{2}\)
\(\sqrt{3-x^2}\)
ĐKXĐ: \(3-x^2\ge0\Leftrightarrow x\le\pm\sqrt{3}\)
* \(\sqrt{\dfrac{x^2}{2}}\) . ĐKXĐ: mọi x
* \(\sqrt{\dfrac{x-1}{-2}}\) . ĐKXĐ: \(\dfrac{x-1}{-2}\ge0\Leftrightarrow x-1\le0\) (vì -2<0) <=> x \(\le\) 1
* \(\sqrt{x^2-4}\) . ĐKXĐ: \(x^2-4\ge0\Leftrightarrow\left[{}\begin{matrix}x\ge2\\x\le-2\end{matrix}\right.\)
* \(\sqrt{\dfrac{x-1}{2x^2}}\) .ĐKXĐ: \(\dfrac{x-1}{2x^2}\ge0\Leftrightarrow x-1\ge0\)(vì 2x^2 > 0 với mọi x) <=> x \(\ge\) 1
ĐKXĐ: \(x>0;x\ne1\)
\(\dfrac{2x+\sqrt{x}-1}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}=\dfrac{x-1+x+\sqrt{x}}{1-x}+\dfrac{x\sqrt{x}-\sqrt{x}+x\sqrt{x}+x}{1+x\sqrt{x}}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+\sqrt{x}\left(\sqrt{x}+1\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+x\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\dfrac{2\sqrt{x}-1}{1-\sqrt{x}}+\dfrac{\left(2\sqrt{x}-1\right)\sqrt{x}}{x-\sqrt{x}+1}=\left(2\sqrt{x}-1\right)\left(\dfrac{1}{1-\sqrt{x}}+\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\right)\)
\(=\dfrac{2\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}\)
Vậy \(A=\left(\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}\right):\left(\dfrac{2\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}\right)\)
\(A=\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)
b/ Dễ dàng nhận ra \(A>0\)\(A=\dfrac{x-\sqrt{x}+1}{\sqrt{x}}=\sqrt{x}-1+\dfrac{1}{\sqrt{x}}=\sqrt{17-12\sqrt{2}}-1+\dfrac{1}{\sqrt{17-12\sqrt{2}}}\)
\(A=\sqrt{17-12\sqrt{2}}-1+\sqrt{17+12\sqrt{2}}=\sqrt{\left(3-2\sqrt{2}\right)^2}-1+\sqrt{\left(3+2\sqrt{2}\right)^2}\)
\(\Rightarrow A=3-2\sqrt{2}+3+2\sqrt{2}-1=6-1=5\)
c/ Ta có \(A=\sqrt{x}+\dfrac{1}{\sqrt{x}}-1>2\sqrt{\sqrt{x}.\dfrac{1}{\sqrt{x}}}-1=1\) (dấu "=" không xảy ra)
Mà \(A>0\Rightarrow\sqrt{A}>1\Rightarrow\sqrt{A}-1>0\)
Ta có \(A-\sqrt{A}=\sqrt{A}\left(\sqrt{A}-1\right)>0\) do \(\left\{{}\begin{matrix}\sqrt{A}>0\\\sqrt{A}-1>0\end{matrix}\right.\)
\(\Rightarrow A>\sqrt{A}\) \(\forall x\)
\(G=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(x-1\right)^2}{2}\)
\(=-\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{2}=-\sqrt{x}\left(\sqrt{x}-1\right)\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ne1\\x>0\end{matrix}\right.\)
b)
\(D=\left(\dfrac{2x+1}{\sqrt{x^3}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+\sqrt{x^3}}{1+\sqrt{x}}-\sqrt{x}\right)\)
\(=\left(\dfrac{2x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(\dfrac{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)}{1+\sqrt{x}}-\sqrt{x}\right)\)
\(=\dfrac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(1-\sqrt{x}+x-\sqrt{x}\right)\)
\(=\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)^2\)
\(=\sqrt{x}-1\)
c)
Giả sử \(D>\dfrac{-2}{\sqrt{x}}\)
\(\Rightarrow\sqrt{x}-1>-\dfrac{2}{\sqrt{x}}\Leftrightarrow\sqrt{x}-1+\dfrac{2}{\sqrt{x}}>0\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}-1\right)\sqrt{x}+2}{\sqrt{x}}>0\Leftrightarrow x-\sqrt{x}+2>0\Leftrightarrow\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{7}{4}>0\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\)(luôn đúng)
a, ĐKXĐ: \(2-4x\ge0\)
\(\Rightarrow x\le\dfrac{1}{2}\)
b, ĐKXĐ: \(\left\{{}\begin{matrix}\dfrac{-3}{x-1}>0\\x^2+4\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1< 0\\x\in R\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 1\\x\in R\end{matrix}\right.\)
(Do ta có: \(x^2+4\ge0\) \(\left(\forall x\in R\right)\))
c, ĐKXĐ: \(4x^2-12x+9>0\) (do biểu thức căn dưới mẫu)
\(\Rightarrow\left(2x-3\right)^2>0\)
\(\Rightarrow x\ne\dfrac{3}{2}\)
Bài 3:
a: \(=\left(4\sqrt{2}-6\sqrt{2}\right)\cdot\dfrac{\sqrt{2}}{2}=-2\sqrt{2}\cdot\dfrac{\sqrt{2}}{2}=-2\)
b: \(=\dfrac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}-2\left(\sqrt{6}-1\right)\)
\(=\sqrt{6}-2\sqrt{6}+2=2-\sqrt{6}\)
Điều kiện xác định của biểu thức là:
\(2x+1>0\) được \(x>-\dfrac{1}{2}\)
\(x^2\le16\) được \(-4\le x\le4\)
\(x^2-8x+14\ge0\)
\(x^2-8x+14\ge0\Leftrightarrow\left(x-4\right)^2\ge2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4\le-\sqrt{2}\\x-4\ge\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\le4-\sqrt{2}\\x\ge4+\sqrt{2}\end{matrix}\right.\)
Vậy đkxđ của biểu thức là:
\(-\dfrac{1}{2}< x\le4-\sqrt{2}\)
ĐKXĐ: 2x-1>=0 và \(x-\sqrt{2x-1}>0\)
=>x>=1/2 và x>căn 2x-1
=>x>=1/2 và x^2>2x-1
=>x>=1/2 và x^2-2x+1>0
=>x>=1/2 và x<>1
\(\dfrac{1}{\sqrt[]{x-\sqrt[]{2x-1}}}\left(1\right)\)
\(\left(1\right)xđ\Leftrightarrow\left\{{}\begin{matrix}x-\sqrt[]{2x-1}>0\\2x-1\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt[]{2x-1}< x\left(2\right)\\x\ge\dfrac{1}{2}\end{matrix}\right.\) \(\left(I\right)\)
\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\2x-1\ge0\\2x-1< x^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ge\dfrac{1}{2}\\x^2+2x-1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ge\dfrac{1}{2}\\\left(x-1\right)^2>0,\forall x\ne0\end{matrix}\right.\) \(\Leftrightarrow x\ge\dfrac{1}{2}\)
\(\left(I\right)\Leftrightarrow x\ge\dfrac{1}{2}\)