Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\dfrac{3}{\sqrt{12x-1}}\) xác định \(\Leftrightarrow12x-1>0\Leftrightarrow12x>1\Leftrightarrow x>\dfrac{1}{12}\)
\(b,\sqrt{\left(3x+2\right)\left(x-1\right)}\) xác định \(\Leftrightarrow\left(3x+2\right)\left(x-1\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}3x+2\ge0\\x-1\ge0\end{matrix}\right.\\\left[{}\begin{matrix}3x+2\le0\\x-1\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-\dfrac{2}{3}\\x\ge1\end{matrix}\right.\\\left[{}\begin{matrix}x\le-\dfrac{2}{3}\\x\le1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\le-\dfrac{2}{3}\\x\ge1\end{matrix}\right.\)
\(c,\sqrt{3x-2}.\sqrt{x-1}\) xác định \(\Leftrightarrow\left[{}\begin{matrix}3x-2\ge0\\x-1\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{2}{3}\\x\ge1\end{matrix}\right.\) \(\Leftrightarrow x\ge1\)
\(d,\sqrt{\dfrac{-2\sqrt{6}+\sqrt{23}}{-x+5}}\) xác định \(\Leftrightarrow-x+5>0\Leftrightarrow x< 5\)
1: ĐKXĐ: -2/2x-2>=0
=>2x-2<0
=>x<1
2: ĐKXĐ: 2/3x-1>=0
=>3x-1>0
=>x>1/3
3: ĐKXĐ: 2x-2/(-2)>=0
=>2x-2<=0
=>x<=1
4: ĐKXĐ: (3x-2)/5>=0
=>3x-2>=0
=>x>=2/3
5: ĐKXĐ: (x-2)/(x+3)>=0
=>x>=2 hoặc x<-3
\(A=\dfrac{4x\sqrt{x}+3x+9+x-9}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}:\dfrac{x+2\sqrt{x}-4\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{4x\sqrt{x}+4x}{x-2\sqrt{x}-3}=\dfrac{4x\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}=\dfrac{4x}{\sqrt{x}-3}\)
a: \(A=\left(\dfrac{\sqrt{3}\left(x-\sqrt{3}\right)+3}{\left(x-\sqrt{3}\right)\left(x^2+x\sqrt{3}+3\right)}\right)\cdot\dfrac{x^2+3+x\sqrt{3}}{x\sqrt{3}}\)
\(=\dfrac{x\sqrt{3}}{\left(x-\sqrt{3}\right)\left(x^2+x\sqrt{3}+3\right)}\cdot\dfrac{x^2+x\sqrt{3}+3}{x\sqrt{3}}\)
\(=\dfrac{1}{x-\sqrt{3}}\)
b: \(B=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1\)
\(=x-\sqrt{x}-x-\sqrt{x}+x+1\)
\(=x-2\sqrt{x}+1\)
c: \(C=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\cdot\dfrac{x\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}{\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}-2-\left(x-\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}}=2\)
\(A=1-\left(\dfrac{2}{1+2\sqrt{x}}-\dfrac{5\sqrt{x}}{4x-1}-\dfrac{1}{1-2\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{4x+4\sqrt{x}+1}\)
\(=1-\dfrac{2\left(4x-1\right)-\left(1-2\sqrt{x}\right)-5\sqrt{x}\cdot\left(1+2\sqrt{x}\right)\cdot\left(1-2\sqrt{x}\right)-\left(1-2\sqrt{x}\right)\cdot\left(4x-1\right)}{\left(1+2\sqrt{x}\right)\cdot\left(4x-1\right)\cdot\left(1-2\sqrt{x}\right)}\cdot\dfrac{4x+4\sqrt{x}+1}{\sqrt{x}-1}\)
\(=1-\dfrac{4x-4x\sqrt{x}-1+\sqrt{x}}{\left(1+2\sqrt{x}\right)\cdot\left(4x-1\right)\cdot\left(1-2\sqrt{x}\right)}\cdot\dfrac{4x+4\sqrt{x}+1}{\sqrt{x}-1}\)
\(=1-\dfrac{4x\cdot\left(1-\sqrt{x}\right)-\left(1-\sqrt{x}\right)}{\left(1+2\sqrt{x}\right)\cdot\left(4x-1\right)\cdot\left(1-2\sqrt{x}\right)}\cdot\dfrac{4x+4\sqrt{x}+1}{\sqrt{x}-1}\)
\(=1-\dfrac{\left(4x-1\right)\cdot\left(1-\sqrt{x}\right)}{\left(1+2\sqrt{x}\right)\cdot\left(4x-1\right)\cdot\left(1-2\sqrt{x}\right)}\cdot\dfrac{4x+4\sqrt{x}+1}{\sqrt{x}-1}\)
\(=1-\dfrac{1-\sqrt{x}}{\left(1+2\sqrt{x}\right)\cdot\left(1-2\sqrt{x}\right)}\cdot\dfrac{4x+4\sqrt{x}+1}{\sqrt{x}-1}\)
\(=1-\dfrac{-\left(\sqrt{x}-1\right)}{\left(1+2\sqrt{x}\right)\cdot\left(1-2\sqrt{x}\right)}\cdot\dfrac{4x+4\sqrt{x}+1}{\sqrt{x}-1}\)
\(=1-\dfrac{-1}{\left(1-2\sqrt{x}\right)\cdot\left(1-2\sqrt{x}\right)}\cdot\left(4x+4\sqrt{x}+1\right)\)
\(=1+\dfrac{1}{1-4x}\cdot\left(4x+4\sqrt{x}+1\right)\)
\(=1+\dfrac{4x+4\sqrt{x}+1}{1-4x}\)
\(=\dfrac{1-4x+4x+4\sqrt{x}+1}{1-4x}\)
\(=\dfrac{2+4\sqrt{x}}{1-4x}\)
a) ĐKXĐ : \(\dfrac{-3}{3x+5}\ge0\)
\(\Leftrightarrow3x+5\le0\)
\(\Leftrightarrow3x\le-5\)
\(\Leftrightarrow x\le-\dfrac{5}{3}\)
b) ĐKXĐ :
\(\left\{{}\begin{matrix}x-1\ne0\\4x-4\ge0\end{matrix}\right.\)
\(\Leftrightarrow x>1\)