Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\left(\dfrac{\sqrt{3}\left(x-\sqrt{3}\right)+3}{\left(x-\sqrt{3}\right)\left(x^2+x\sqrt{3}+3\right)}\right)\cdot\dfrac{x^2+3+x\sqrt{3}}{x\sqrt{3}}\)
\(=\dfrac{x\sqrt{3}}{\left(x-\sqrt{3}\right)\left(x^2+x\sqrt{3}+3\right)}\cdot\dfrac{x^2+x\sqrt{3}+3}{x\sqrt{3}}\)
\(=\dfrac{1}{x-\sqrt{3}}\)
b: \(B=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1\)
\(=x-\sqrt{x}-x-\sqrt{x}+x+1\)
\(=x-2\sqrt{x}+1\)
c: \(C=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\cdot\dfrac{x\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}{\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}-2-\left(x-\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}}=2\)
a: \(A=\dfrac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}=\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}\)
Mk sửa lại đề nha
\(A=\left(\frac{x-5\sqrt{x}}{x-25}-1\right):\left(\frac{25-x}{x+2\sqrt{x}-15}-\frac{\sqrt{x}+3}{\sqrt{x}+5}+\frac{\sqrt{x}-5}{\sqrt{x}-3}\right)\left(ĐKXĐ:x\ne25\right)\)
\(A=\left(\frac{x-5\sqrt{x}-x+25}{x-25}\right):\left(\frac{25-x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}-\frac{\sqrt{x}+3}{\sqrt{x}+5}+\frac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)
\(A=\left(\frac{25-5\sqrt{x}}{x-25}\right):\left(\frac{25-x-x+9+x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)
\(A=\left(\frac{5.\left(5-\sqrt{x}\right)}{x-25}\right):\left(\frac{9-x}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)
\(a,\dfrac{3}{\sqrt{12x-1}}\) xác định \(\Leftrightarrow12x-1>0\Leftrightarrow12x>1\Leftrightarrow x>\dfrac{1}{12}\)
\(b,\sqrt{\left(3x+2\right)\left(x-1\right)}\) xác định \(\Leftrightarrow\left(3x+2\right)\left(x-1\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}3x+2\ge0\\x-1\ge0\end{matrix}\right.\\\left[{}\begin{matrix}3x+2\le0\\x-1\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-\dfrac{2}{3}\\x\ge1\end{matrix}\right.\\\left[{}\begin{matrix}x\le-\dfrac{2}{3}\\x\le1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\le-\dfrac{2}{3}\\x\ge1\end{matrix}\right.\)
\(c,\sqrt{3x-2}.\sqrt{x-1}\) xác định \(\Leftrightarrow\left[{}\begin{matrix}3x-2\ge0\\x-1\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{2}{3}\\x\ge1\end{matrix}\right.\) \(\Leftrightarrow x\ge1\)
\(d,\sqrt{\dfrac{-2\sqrt{6}+\sqrt{23}}{-x+5}}\) xác định \(\Leftrightarrow-x+5>0\Leftrightarrow x< 5\)
a: \(A=\dfrac{\sqrt{x}+2+x-9-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}+2-\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}=\dfrac{\sqrt{x}+1}{x-4}\)
b: |x|=3
=>x=3(nhận) hoặc x=-3(loại)
Thay x=3 vào A, ta được:
\(A=\dfrac{\sqrt{3}+1}{3-4}=-\sqrt{3}-1\)
\(A=\dfrac{4x\sqrt{x}+3x+9+x-9}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}:\dfrac{x+2\sqrt{x}-4\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{4x\sqrt{x}+4x}{x-2\sqrt{x}-3}=\dfrac{4x\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}=\dfrac{4x}{\sqrt{x}-3}\)