K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2019

\(A=\left(\frac{\left(1-x\right)\left(x-1\right)-\left(x+3\right)^2}{\left(x+3\right)\left(x-1\right)}\right):\left(\frac{\left(x+3\right)^2-\left(x-1\right)^2}{\left(x-1\right)\left(x+3\right)}\right)\)(ĐKXĐ: x khác -3 và 1)

\(=\frac{-x^2+2x-1-x^2-6x-9}{\left(x+3\right)\left(x-1\right)}:\frac{x^2+6x+9-x^2+2x-1}{\left(x-1\right)\left(x+3\right)}\)

\(=\frac{-2x^2-4x-10}{\left(x+3\right)\left(x-1\right)}:\frac{8x+8}{\left(x-1\right)\left(x+3\right)}\)

\(=\frac{-2x^2-4x-10}{8x+8}\)

Mà \(-2x^2-4x-10=-2\left(x+1\right)^2-8< 0\forall x\)

Nên để A < 0 thì \(8x+8>0\Leftrightarrow x>-1\)

Vậy với \(x>-1,x\ne1\)thì A < 0

a: ĐKXĐ: x<>0; x<>-3

b: \(=\dfrac{x^2+6x+9}{x\left(x+3\right)}\cdot\dfrac{2}{x+3}=\dfrac{2}{x}\)

c: Khi x=1/5 thì A=2:1/5=10

14 tháng 12 2018

a,ĐK:  \(\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)

b, \(A=\left(\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)

\(=\frac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\frac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)

\(=\frac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}.\frac{3x\left(x+3\right)}{-x^2+3x-9}=\frac{-3}{x-3}\)

c, Với x = 4 thỏa mãn ĐKXĐ thì

\(A=\frac{-3}{4-3}=-3\)

d, \(A\in Z\Rightarrow-3⋮\left(x-3\right)\)

\(\Rightarrow x-3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\Rightarrow x\in\left\{0;2;4;6\right\}\)

Mà \(x\ne0\Rightarrow x\in\left\{2;4;6\right\}\)

TXĐ: \(\left\{{}\begin{matrix}x\in R\\x\notin\left\{-3;1\right\}\end{matrix}\right.\)

Để giá trị 2 biểu thức bằng nhau thì \(\dfrac{x+2}{x+3}-\dfrac{x+1}{x-1}=\dfrac{4}{\left(x+3\right)\left(x-1\right)}\)

\(\Leftrightarrow\dfrac{\left(x+2\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}-\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}=\dfrac{4}{\left(x+3\right)\left(x-1\right)}\)

Suy ra: \(x^2-x+2x-2-\left(x^2+4x+3\right)=4\)

\(\Leftrightarrow x^2+x-2-x^2-4x-3-4=0\)

\(\Leftrightarrow3x-9=0\)

\(\Leftrightarrow3x=9\)

hay x=3(thỏa ĐK)

Vậy: S={3}

Đề sai rồi bạn

a: ĐKXĐ: x<>-1

b: \(P=\left(1-\dfrac{x+1}{x^2-x+1}\right)\cdot\dfrac{x^2-x+1}{x+1}\)

\(=\dfrac{x^2-x+1-x-1}{x^2-x+1}\cdot\dfrac{x^2-x+1}{x+1}=\dfrac{x^2-2x}{x+1}\)

c: P=2

=>x^2-2x=2x+2

=>x^2-4x-2=0

=>\(x=2\pm\sqrt{6}\)

29 tháng 12 2022

\(A=\left(\dfrac{x-3}{x+3}-\dfrac{x+3}{x-3}\right).\dfrac{2x+6}{8x}\)

\(a,\) Điều kiện xác định: \(\left\{{}\begin{matrix}x+3\ne0\\x-3\ne0\\8x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-3\\x\ne3\\x\ne0\end{matrix}\right.\)

\(b,A=\left(\dfrac{x-3}{x+3}-\dfrac{x+3}{x-3}\right).\dfrac{2x+6}{8x}\)

\(=\left[\dfrac{\left(x-3\right)^2}{\left(x+3\right)\left(x-3\right)}-\dfrac{\left(x+3\right)^2}{\left(x+3\right)\left(x-3\right)}\right].\dfrac{2\left(x+3\right)}{8x}\)

\(=\dfrac{\left(x-3-x-3\right)\left(x-3+x+3\right)}{\left(x+3\right)\left(x-3\right)}.\dfrac{x+3}{4x}\)

\(=\dfrac{-6.2x}{\left(x-3\right)}.\dfrac{1}{4x}\)

\(=\dfrac{-12x}{4x\left(x-3\right)}\)

\(=\dfrac{-3}{x-3}\)

\(c,A=\dfrac{1}{2}\Rightarrow\dfrac{-3}{x-3}=\dfrac{1}{2}\Leftrightarrow x=-3\)

29 tháng 12 2022

câu d anh lm đc ko ạ