Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 1/x+1/y+1/xy=2/3
=>y/xy+x/yx+1/xy=2/3
=>x+y+1/xy=2/3
=>2xy=3x+3y+3
Lập bảng là ok
\(\frac{x}{2}=\frac{-1}{y}\Rightarrow xy=-2\Rightarrow x;y\inƯ\left(-2\right)=\left\{\pm1;\pm2\right\}\)
x | 1 | -1 | 2 | -2 |
y | -2 | 2 | -1 | 1 |
\(\frac{x}{-3}=\frac{1}{y}\Rightarrow xy=-3\Rightarrow x;y\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
x | 1 | -1 | 3 | -3 |
y | -3 | 3 | -1 | 1 |
tương tự 2 phần dưới
\(x^2-xy+y+1=0\)
\(\Leftrightarrow\left(x^2-1\right)-y\left(x-1\right)+2=0\)
\(\Leftrightarrow\left(x+1-y\right)\left(x-1\right)=-2\)
\(\Rightarrow x-1;x+1-y\inƯ\left(-2\right)=\left\{\pm1;\pm2\right\}\)
x - 1 | 1 | -1 | 2 | -2 |
x + 1 - y | 2 | -2 | 1 | -1 |
x | 2 | 0 | 3 | -1 |
y | 1 | 3 | 3 | 1 |
bảng mình xét nhầm nhé phải là như này :
x - 1 | 1 | -1 | 2 | -2 |
x + 1 - y | -2 | 2 | -1 | 1 |
x | 2 | 0 | 3 | -1 |
y | 5 | -1 | 5 | 1 |
x(y+2)+y = 1
x(y+2)+(y+2) = 1+2
(y+2)(x+1) = 3
ta co bang
y+ 2 | 1 -1 | 3 | -3 |
X + 1 | 3 -3 | 1 | -1 |
y | -1 -3 | 1 | -5 |
x | 2 -4 | 0 | -2 |
Bài làm:
Ta có: \(\left|x-1\right|\left|y+1\right|=2=1.2=\left(-1\right).\left(-2\right)\)
Mà \(\hept{\begin{cases}\left|x-1\right|\ge0\\\left|y+1\right|\ge0\end{cases}\left(\forall x,y\right)}\)
=> Ta có các TH sau:
+ \(\hept{\begin{cases}\left|x-1\right|=1\\\left|y+1\right|=2\end{cases}}\) => \(\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}}\) và \(\orbr{\begin{cases}y+1=2\\y+1=-2\end{cases}}\)
=> \(\orbr{\begin{cases}x=2\\x=0\end{cases}}\) và \(\orbr{\begin{cases}y=1\\y=-3\end{cases}}\)
+ \(\hept{\begin{cases}\left|x-1\right|=2\\\left|y+1\right|=1\end{cases}}\) => \(\orbr{\begin{cases}x-1=2\\x-1=-2\end{cases}}\) và \(\orbr{\begin{cases}y+1=1\\y+1=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=3\\x=-1\end{cases}}\) và \(\orbr{\begin{cases}y=0\\y=-2\end{cases}}\)
Vậy ta có các cặp số (x;y) thỏa mãn: (2;1) ; (2;-3) ; (0;1) ; (0;-3) ; (3;0) ; (3;-2) ; (-1;0) ; (-1;-2)