\(x^2+y^2=53\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2018

Dễ mà bạn 

X + y = 5 => x = 5 - y

=> \(\left(5-y\right)^2+y^2=53\)

=>\(25-10y+2y^2=53\)

Đễn đây bạn tìm đc y nhờ giải pt bậc 2 và để tìm x bạn thay y vào " x = 5-y"

14 tháng 6 2018

\(x^2+y^2=53\)

\(\Leftrightarrow\left(x+y\right)^2-2xy=53\)

\(\Leftrightarrow-2xy=28\)

\(\Leftrightarrow xy=-14\)

Do đó ta có các cặp (x;y) là: (-1;14); (14;-1); (-14;1); (-1;14); (-7;2); (2;-7); (7;-2);(-2;7)

12 tháng 8 2016

\(1,\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}=\frac{x^2+y^2+z^2}{5}=\frac{x^2}{5}+\frac{y^2}{5}+\frac{z^2}{5}\)

\(=>\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}-\left(\frac{x^2}{5}+\frac{y^2}{5}+\frac{z^2}{5}\right)=0\)

\(=>\left(\frac{x^2}{2}-\frac{x^2}{5}\right)+\left(\frac{y^2}{3}-\frac{y^2}{5}\right)+\left(\frac{z^2}{4}-\frac{z^2}{5}\right)=0\)

\(=>\left(\frac{5x^2}{10}-\frac{2x^2}{10}\right)+\left(\frac{5y^2}{15}-\frac{3y^2}{15}\right)+\left(\frac{5z^2}{20}-\frac{4z^2}{20}\right)=0\)

\(=>\frac{3}{10}x^2+\frac{2}{15}y^2+\frac{1}{20}z^2=0\)

Tổng 3 số không âm=0 <=> chúng đều=0

\(< =>\frac{3}{10}x^2=\frac{2}{15}y^2=\frac{1}{20}z^2=0< =>x=y=z=0\)

Vậy x=y=z=0

\(2,x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\)

\(=>x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}-4=0\)

\(=>\left(x^2+\frac{1}{x^2}-2\right)+\left(y^2+\frac{1}{y^2}-2\right)=0\)

\(=>\left(x^2-2+\frac{1}{x^2}\right)+\left(y^2-2+\frac{1}{y^2}\right)=0\)

\(=>\left(x^2-2.x.\frac{1}{x}+\frac{1}{x^2}\right)+\left(y^2-2.y.\frac{1}{y}+\frac{1}{y^2}\right)=0\)

\(=>\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2=0\)

Tổng 2 số không âm=0 <=> chúng đều=0

\(< =>\hept{\begin{cases}x-\frac{1}{x}=0\\y-\frac{1}{y}=0\end{cases}< =>\hept{\begin{cases}x=\frac{1}{x}\\y=\frac{1}{y}\end{cases}< =>\hept{\begin{cases}x^2=1\\y^2=1\end{cases}}}}\)\(< =>\hept{\begin{cases}x\in\left\{-1;1\right\}\\y\in\left\{-1;1\right\}\end{cases}}\)

Vậy có 4 cặp (x;y) cần tìm là (1;1) ;(1;-1);(-1;1);(-1;-1)

15 tháng 8 2016

cảm ơn bạn Hoàng Phúc

2(xy-x2-y+1008)=y2+2018

<=> 2y2+4036-4xy+4x2+4y-4032=0

<=> (y2-4xy+4x2)+(y2+4y+4)=0

<=> (y-2x)2+(y+2)2=0

<=>\(\hept{\begin{cases}y-2x=0\\y+2=0\end{cases}}\)

<=>\(\hept{\begin{cases}y=2x\\y=-2\end{cases}}\)

<=>\(\hept{\begin{cases}x=-4\\y=-2\end{cases}}\)

Chúc học tốt!!! Nhớ k mik nha

28 tháng 2 2017

a/ \(x^3+2x^2+3x+2=y^3\)

Với \(\orbr{\begin{cases}x>1\\x< -1\end{cases}}\)thì

\(x^3< x^3+2x^2+3x+2=y^3< \left(x+1\right)^3\)

Nên không tồn tại số nguyên x, y thỏa mãn đề bài.

Từ đây ta suy ra \(-1\le x\le1\)

Với \(x=-1\Rightarrow y=0\)

\(x=0\Rightarrow y=\sqrt[3]{2}\left(l\right)\)

\(x=1\Rightarrow y=2\)

28 tháng 2 2017

b/ \(y^2+2\left(x^2+1\right)=2y\left(x+1\right)\)

\(\Leftrightarrow2y^2+4\left(x^2+1\right)=4y\left(x+1\right)\)

\(\Leftrightarrow\left(y^2-4xy+4x^2\right)+\left(y^2-4y+4\right)=0\)

\(\Leftrightarrow\left(y-2x\right)^2+\left(y-2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}y=2x\\y=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

22 tháng 7 2019

\(\frac{x}{5}-\frac{2}{y}=\frac{2}{15}\)

\(\Leftrightarrow\frac{2}{y}=\frac{x}{5}-\frac{2}{15}\)

\(\Leftrightarrow\frac{2}{y}=\frac{3x-2}{15}\)

\(\Leftrightarrow\left(3x-2\right)y=30\)

Lập bảng tìm nhé

26 tháng 10 2017

bạn nào đúng mk k nha okay!!!

10 tháng 12 2017

minh giong vu the qang huy

30 tháng 12 2019

Tìm min :

Ta có : \(x^2+y^2-xy=4\)

\(\Leftrightarrow x^2+y^2=4+xy\le4+\frac{x^2+y^2}{2}\) ( vì \(\left(x-y\right)^2\ge0\) )
\(\Leftrightarrow\frac{A}{2}\le4\)

\(\Leftrightarrow A\le8\)

30 tháng 12 2019

Tìm max

\(x^2+y^2-xy=4\)

\(\Leftrightarrow x^2+y^2=4+xy\)

\(\Leftrightarrow3\left(x^2+y^2\right)=8+\left(x+y\right)^2\ge8\)

\(\Leftrightarrow A\ge\frac{8}{3}\)