Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}=\frac{x^2}{5}+\frac{y^2}{5}+\frac{z^2}{5}\)
\(\Rightarrow\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}-\frac{x^2}{5}-\frac{y^2}{5}-\frac{z^2}{5}=0\)
\(\Rightarrow\left(\frac{x^2}{2}-\frac{x^2}{5}\right)+\left(\frac{y^2}{3}-\frac{y^2}{5}\right)+\left(\frac{z^2}{4}-\frac{z^2}{5}\right)=0\)
\(\Rightarrow x^2\left(\frac{1}{2}-\frac{1}{5}\right)+y^2\left(\frac{1}{3}-\frac{1}{5}\right)+z^2\left(\frac{1}{4}-\frac{1}{5}\right)=0\)
Mà \(x^2\left(\frac{1}{2}-\frac{1}{5}\right)+y^2\left(\frac{1}{3}-\frac{1}{5}\right)+z^2\left(\frac{1}{4}-\frac{1}{5}\right)\ge0\)
Xảy ra khi \(\hept{\begin{cases}x^2\left(\frac{1}{2}-\frac{1}{5}\right)=0\\y^2\left(\frac{1}{3}-\frac{1}{5}\right)=0\\z^2\left(\frac{1}{4}-\frac{1}{5}\right)=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2=0\\y^2=0\\z^2=0\end{cases}}\)\(\Rightarrow x=y=z=0\)
\(1,\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}=\frac{x^2+y^2+z^2}{5}=\frac{x^2}{5}+\frac{y^2}{5}+\frac{z^2}{5}\)
\(=>\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}-\left(\frac{x^2}{5}+\frac{y^2}{5}+\frac{z^2}{5}\right)=0\)
\(=>\left(\frac{x^2}{2}-\frac{x^2}{5}\right)+\left(\frac{y^2}{3}-\frac{y^2}{5}\right)+\left(\frac{z^2}{4}-\frac{z^2}{5}\right)=0\)
\(=>\left(\frac{5x^2}{10}-\frac{2x^2}{10}\right)+\left(\frac{5y^2}{15}-\frac{3y^2}{15}\right)+\left(\frac{5z^2}{20}-\frac{4z^2}{20}\right)=0\)
\(=>\frac{3}{10}x^2+\frac{2}{15}y^2+\frac{1}{20}z^2=0\)
Tổng 3 số không âm=0 <=> chúng đều=0
\(< =>\frac{3}{10}x^2=\frac{2}{15}y^2=\frac{1}{20}z^2=0< =>x=y=z=0\)
Vậy x=y=z=0
\(2,x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\)
\(=>x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}-4=0\)
\(=>\left(x^2+\frac{1}{x^2}-2\right)+\left(y^2+\frac{1}{y^2}-2\right)=0\)
\(=>\left(x^2-2+\frac{1}{x^2}\right)+\left(y^2-2+\frac{1}{y^2}\right)=0\)
\(=>\left(x^2-2.x.\frac{1}{x}+\frac{1}{x^2}\right)+\left(y^2-2.y.\frac{1}{y}+\frac{1}{y^2}\right)=0\)
\(=>\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2=0\)
Tổng 2 số không âm=0 <=> chúng đều=0
\(< =>\hept{\begin{cases}x-\frac{1}{x}=0\\y-\frac{1}{y}=0\end{cases}< =>\hept{\begin{cases}x=\frac{1}{x}\\y=\frac{1}{y}\end{cases}< =>\hept{\begin{cases}x^2=1\\y^2=1\end{cases}}}}\)\(< =>\hept{\begin{cases}x\in\left\{-1;1\right\}\\y\in\left\{-1;1\right\}\end{cases}}\)
Vậy có 4 cặp (x;y) cần tìm là (1;1) ;(1;-1);(-1;1);(-1;-1)
Ta có: \(\frac{xy+1}{x+y}\ge\frac{3y+1}{x+y}\ge\frac{3y+1}{2y}>\frac{3y}{2y}=\frac{3}{2}\)( mâu thuẫn với gt)
giả sử \(a\le2\Rightarrow a\in\left\{1;2\right\}\)
+ Với a=1 \(\Rightarrow M=\frac{y^3+1}{y^3+1}=1\)
+ Với a=2 \(\Rightarrow M=\frac{8y^3+1}{y^3+8}\)
Từ đk \(\frac{xy+1}{x+y}=\frac{2y+1}{y+2}< \frac{3}{2}\Rightarrow b< 4\)
=> \(b\in\left\{1;2;3\right\}\)
+ Với b=1 \(\Rightarrow M=\frac{9}{9}=1\)
+ Với b=2 \(\Rightarrow M=\frac{8.8+1}{8+8}=\frac{65}{16}\)
+ vỚI b=3 \(\Rightarrow M=\frac{8.27+1}{27+8}=\frac{217}{35}\Leftrightarrow\hept{\begin{cases}a=2\\b=3\end{cases}}\) hoặc ngược lại.
1/ Ta có
\(x^2+9x+20=x^2+4x+5x+20=x\left(x+4\right)+5\left(x+4\right)=\left(x+4\right)\left(x+5\right)\)
Tương tự
\(x^2+11x+30=\left(x+5\right)\left(x+6\right)\)
\(x^2+13x+42=\left(x+6\right)\left(x+7\right)\)
Đk: x khác 4, 5, 6, 7
\(\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{\left(x+5\right)-\left(x+4\right)}{\left(x+4\right)\left(x+5\right)}+\frac{\left(x+6\right)-\left(x+5\right)}{\left(x+5\right)\left(x+6\right)}+\frac{\left(x+7\right)-\left(x+6\right)}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\) EM tự làm tiếp nhé
\(P=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{a}+\frac{1}{c}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\)
Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow xyz=1\Rightarrow P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(P\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z\Leftrightarrow a=b=c=1\)
Cần cách khác thì nhắn cái
\(\frac{x}{5}-\frac{2}{y}=\frac{2}{15}\)
\(\Leftrightarrow\frac{2}{y}=\frac{x}{5}-\frac{2}{15}\)
\(\Leftrightarrow\frac{2}{y}=\frac{3x-2}{15}\)
\(\Leftrightarrow\left(3x-2\right)y=30\)
Lập bảng tìm nhé