Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : 803 là số lẻ
=> ( 20a + 7b + 3 )( 20^a + 20a + b ) là số lẻ
=> 20a + 7b + 3 và 20^a + 20a + b là số lẻ
TH1 : nếu a khác 0
=> 20^a + 20a là là số chẵn
mà 20^a + 20a + b là số lẻ ( theo trên )
=> b lẻ
=> 20b + 3 chẵn
=> 20a + 7b + 3 chẵn ( loại )
TH2 : a = 0
=> (7b+3)(b+1) = 803 = 1. 803 = 11.73
vì b thuộc N
=> 7b + 3 > b+1
do đó
7b + 3 = 803 và b +1 = 1 => loại
hoặc 7b+3 = 73 và b +1 = 11 => b = 40
vậy a = 0 và b = 40
\(A=\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\)
\(A=\left|x-2014\right|+\left|2015-x\right|+\left|2016-x\right|\)
\(A=\left|2015-x\right|+\left(\left|x-2014\right|+\left|2016-x\right|\right)\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|2015-x\right|+\left(\left|x-2014\right|+\left|2016-x\right|\right)\)
\(A=\left|x-2014\right|+\left|2016-x\right|\ge\left|x-2014+2016-x\right|\)
\(\Rightarrow A\ge\left|2\right|\)
\(\Rightarrow A\ge2.\)
Dấu '' = '' xảy ra khi:
\(\left\{{}\begin{matrix}x-2014\ge0\\2015-x=0\\2016-x\le0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge2014\\x=2015\\x\le2016\end{matrix}\right.\Rightarrow x=2015.\)
Vậy \(MIN_A=2\) khi \(x=2015.\)
Chúc bạn học tốt!
\(A=\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\)
\(=\left|x-2014\right|+\left|2016-x\right|+\left|x-2015\right|\ge\left|x-2014+2016-x\right|+\left|x-2015\right|\)
\(=2\)
Dấu " = " xảy ra \(\Leftrightarrow x=2015\)
Vậy .........
- ngocduong516
- 06/12/2021
ta có : 803 là số lẻ
=> ( 50a + 7b + 3 )( 50^a + 50a + b ) là số lẻ
=> 50a + 7b + 3 và 50^a + 50a + b là số lẻ
TH1 : nếu a khác 0
=> 50^a + 50a là là số chẵn
mà 50^a + 50a + b là số lẻ ( theo trên )
=> b lẻ
=> 50b + 3 chẵn
=> 50a + 7b + 3 chẵn ( loại )
TH2 : a = 0
=> (7b+3)(b+1) = 803 = 1. 803 = 11.73
vì b thuộc N
=> 7b + 3 > b+1
do đó
7b + 3 = 803 và b +1 = 1 => loại
hoặc 7b+3 = 73 và b +1 = 11 => b = 50
vậy a = 0 và b = 100
ta có \(a^{2012}+b^{2012}=a^{2013}+b^{2013}\)
\(\Rightarrow a^{2012}-a^{2013}+b^{2012}_{ }-b^{2013}=0\)
\(\Rightarrow a^{2012}\left(1-a\right)+b^{2012}\left(1-b\right)=0\)\(\left(1\right)\)
tương tự \(a^{2013}+b^{2013}=a^{2014}+b^{2014}\)
\(\Leftrightarrow a^{2013}\left(1-a\right)+b^{2013}\left(1-b\right)=0\)\(\left(2\right)\)
trừ (1) cho (2)
ta có \(\left(a^{2012}-a^{2013}\right)\left(1-a\right)\)\(+\left(b^{2012}-b^{2013}\right)\left(1-b\right)=0\)
\(\Leftrightarrow a^{2012}\left(1-a\right)^2+b^{2012}\left(1-b\right)^2=0\)
mà\(a^{2012}\left(1-a\right)^2\ge0;b^{2012}\left(1-b\right)^2\ge0\)
\(\Rightarrow a=1;b=1\)
\(\Rightarrow M=20\times1+11\times1+2013=2044\)