Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ne1\)
Ta có: \(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)
\(=\dfrac{x^4-2x^3+x^2-4x^2+8x-4+3}{x^2-2x+1}\)
\(=\dfrac{x^2\left(x^2-2x+1\right)-4\left(x^2-2x+1\right)+3}{x^2-2x+1}\)
\(=\dfrac{\left(x-1\right)^2\cdot\left(x^2-4\right)+3}{\left(x-1\right)^2}\)
\(=x^2-4+\dfrac{3}{\left(x-1\right)^2}\)
Để B nguyên thì \(3⋮\left(x-1\right)^2\)
\(\Leftrightarrow\left(x-1\right)^2\inƯ\left(3\right)\)
\(\Leftrightarrow\left(x-1\right)^2\in\left\{1;3;-1;-3\right\}\)
mà \(\left(x-1\right)^2>0\forall x\) thỏa mãn ĐKXĐ
nên \(\left(x-1\right)^2\in\left\{1;3\right\}\)
\(\Leftrightarrow x-1\in\left\{1;9\right\}\)
hay \(x\in\left\{2;10\right\}\) (nhận)
Vậy: \(x\in\left\{2;10\right\}\)
\(C=\dfrac{\left(x^2+3x\right)\left(x^2+2\right)-2}{x^2+2}=x^2+3x-\dfrac{2}{x^2+2}\)
\(C\in Z\Leftrightarrow2⋮\left(x^2+2\right)\)
\(\Leftrightarrow x^2+2=2\Rightarrow x=0\)
MK ko biế đúng ko nữa , sai thì ý kiến
a)
b)
Chúc các bn hok tốt
Tham khảo nhé
a)
Để A nguyên \(\Leftrightarrow x^3+x⋮x-1\)
\(\Leftrightarrow x^3-1+x+1⋮x-1\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)+x+1⋮x-1\left(1\right)\)
Vì x nguyên \(\Rightarrow\hept{\begin{cases}x-1\in Z\\x^2+x+1\in Z\end{cases}}\)
\(\Rightarrow\left(x-1\right)\left(x^2+x+1\right)⋮x-1\left(2\right)\)
Từ (1) và (2) \(\Rightarrow x+1⋮x-1\)
\(\Leftrightarrow x-1+2⋮x-1\)
Mà \(x-1⋮x-1\)
\(\Rightarrow2⋮x-1\)
\(\Rightarrow x-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Rightarrow x\in\left\{-1;0;2;3\right\}\)
Vậy \(x\in\left\{-1;0;2;3\right\}\)
b) Để B nguyên \(\Leftrightarrow x^2-4x+5⋮2x-1\)
\(\Leftrightarrow2x^2-8x+10⋮2x-1\)
\(\Leftrightarrow\left(2x^2-x\right)-\left(6x-3\right)-\left(x-7\right)⋮2x-1\)
\(\Leftrightarrow x\left(2x-1\right)-3\left(2x-1\right)-\left(x-7\right)⋮2x-1\)
\(\Leftrightarrow\left(2x-1\right)\left(x-3\right)-\left(x-7\right)⋮2x-1\left(1\right)\)
Vì x nguyên \(\Rightarrow\hept{\begin{cases}2x-1\in Z\\x-3\in Z\end{cases}}\)
\(\Rightarrow\left(2x-1\right)\left(x-3\right)⋮2x-1\left(2\right)\)
Từ (1) và(2) \(\Rightarrow x-7⋮2x-1\)
\(\Leftrightarrow2x-14⋮2x-1\)
\(\Leftrightarrow2x-1-13⋮2x-1\)
Mà \(2x-1⋮2x-1\)
\(\Rightarrow13⋮2x-1\)
\(\Rightarrow2x-1\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
Làm nốt nha các phần còn lại bạn cứ dựa bài mình mà làm
b) Ta có: \(\frac{x^3+x-2}{x^3-3x^2-2x-8}\)
\(=\frac{x^3-1+x-1}{x^3-4x^2+x^2-4x+2x-8}\)
\(=\frac{\left(x-1\right)\left(x^2+x+1\right)+\left(x-1\right)}{x^2\left(x-4\right)+x\left(x-4\right)+2\left(x-4\right)}\)
\(=\frac{\left(x-1\right)\left(x^2+x+1+1\right)}{\left(x^2+x+2\right)\left(x-4\right)}\)
\(=\frac{\left(x-1\right)\left(x^2+x+2\right)}{\left(x^2+x+2\right)\left(x-4\right)}\)
\(=\frac{x-1}{x-4}\)
\(=\frac{\left(x-4\right)+3}{x-4}=1+\frac{3}{x-4}\)
Để \(\frac{x^3+x-2}{x^3-3x^2-2x-8}\in Z\) <=> \(\frac{3}{x-4}\in Z\)
<=> 3 \(⋮\)x - 4
<=> x - 4 \(\in\)Ư(3) = {1; -1; 3; -3}
Lập bảng:
x - 4 | 1 | -1 | 3 | -3 |
x | 5 | 3 | 7 | 1 |
Vậy ...
1) Để A có giá trị là một số nguyên thì : 5\(⋮\) ( 3+x)
=> \(\left(x+3\right)\inƯ\left(5\right)=\left\{1;5;-1;-5\right\}\)
=> \(x\in\left\{-2;2;-4;-8\right\}\)
2) để B có giá trị là một số nguyên thì
\(\left(2x+4\right)⋮\left(x+3\right)\)
\(\left(2x+6-2\right)⋮\left(x+3\right)\)
\(\left[2.\left(x+3\right)-2\right]⋮\left(x+3\right)\)
\(-2⋮\left(x+3\right)\)
\(\left(x+3\right)\inƯ\left(-2\right)=\left\{1;2;-1;-2\right\}\)
\(x\in\left\{-2;-1;-4;-5\right\}\)
3) Để C có giá trị là số nguyên thì
\(\left(3x+8\right)⋮\left(x-1\right)\)
\(\left(3x-3+11\right)⋮\left(x-1\right)\)
\(\left[3.\left(x-1\right)+11\right]⋮\left(x-1\right)\)
\(11⋮\left(x-1\right)\)
\(\left(x-1\right)\inƯ\left(11\right)=\left\{1;11;-1;-11\right\}\)
\(x\in\left\{2;12;0;-10\right\}\)
d )....
\(\left(3x-2\right)⋮\left(2x+1\right)\)
\(2.\left(3x-2\right)⋮\left(2x+1\right)\)
\(\left(6x-4\right)⋮\left(2x+1\right)\)
\(\left(6x+3-7\right)⋮\left(2x+1\right)\)
\(\left[3.\left(2x+1\right)-7\right]⋮\left(2x-1\right)\)
\(-7⋮\left(2x+1\right)\)
\(\left(2x+1\right)\inƯ\left(-7\right)=\left\{1;7;-1;-7\right\}\)
\(x\in\left\{0;3;-1;-4\right\}\)