Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
a) \(\left(n+2\right)⋮\left(n-3\right)\)
\(\Rightarrow\left(n-3+5\right)⋮\left(n-3\right)\)
\(\Rightarrow5⋮\left(n-3\right)\)
\(\Rightarrow n-3\) là ước của \(5\), ta có:
Trường hợp 1: \(n-3=-1\Rightarrow n=2\)
Trường hợp 2: \(n-3=1\Rightarrow n=4\)
Trường hợp 3: \(n-3=5\Rightarrow n=8\)
Trường hợp 4: \(n-3=-5\Rightarrow n=-2\)
b) Ta có: \(x-3\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
\(\Rightarrow x\in\left\{4;16;2;-10\right\}\)
Vậy để \(x-3\inƯ\left(13\right)\Rightarrow x\in\left\{4;16;2;-10\right\}\)
c) Ta có: \(x-2\inƯ\left(111\right)\)
\(\Rightarrow x-2\in\left\{\pm111;\pm37;\pm3;\pm1\right\}\)
\(\Rightarrow x\in\left\{-99;-35;1;1;3;5;39;113\right\}\)
d) \(5⋮n+15\Rightarrow n+15\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Trường hợp 1: \(n+15=-1\Rightarrow n=-16\)
Trường hợp 2: \(n+15=1\Rightarrow n=-14\)
Trường hợp 3: \(n+15=5\Rightarrow n=-10\)
Trường hợp 4: \(n+15=-5\Rightarrow n=-20\)
Vậy \(n\in\left\{-14;-16;-10;-20\right\}\)
e) \(3⋮n+24\)
\(\Rightarrow n+24\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{-23;-25;-21;-27\right\}\)
f) Ta có: \(x-2⋮x-2\)
\(\Rightarrow4\left(x-2\right)⋮x-2\)
\(\Rightarrow4x-8⋮x-2\)
\(\Rightarrow\left(4x+3\right)-\left(4x-8\right)⋮x-2\)
\(\Rightarrow11⋮x-2\)
\(\Rightarrow x-2\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\in\left\{3;13;1;-9\right\}\)
a, n+2 chia hết cho n-3
Suy ra (n-3)+5 chia hết cho n-3
Suy ra 5 chia hết cho n-3 vì n-3 chia hết cho n-3
suy ra n-3 \(\in\)Ư(5)={-1;-5;1;5}
Ta có bảng giá trị
n-3 | -1 | -5 | 1 | 5 |
n | 2 | -2 | 4 | 8 |
Vậy n={2;-2;4;8}
b, ta có Ư(13)={-1;-13;1;13}
ta có bảng giá trị
x-3 | -1 | -13 | 1 | 13 |
x | 2 | -10 | 4 | 16 |
Vậy n={2;-10;4;16}
c, ta có Ư(111)={-1;-111;;-3;-37;1;111;3;37}
ta có bảng giá trị
x-2 | -1 | -111 | -3 | -37 | 1 | 3 | 111 | 37 |
x | 1 | -99 | -1 | -39 | 3 | 5 | 113 | 39 |
Vậy n={1;-99;-1;-39;3;5;113;39}
3) aaaa=a.1111=a.11.101
Để aaaa chỉ có 2 ước là các số nguyên tố (11 và 101 )thì a=1
vậy aaaa=1111
ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.
Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.
n - 1 \(\in\)Ư(24)
\(\Rightarrow\)n - 1 \(\in\){ 1 ; -1 ; 2 ; -2 ; 3 ; -3 ; 4 ; -4 ; 6 ; -6 ; 8 ; -8 ; 12 ; -12 ; 24 ; -24 }
\(\Rightarrow\)n \(\in\){ 2 ; 0 ; 3 ; -1 ; 4 ; -2 ; 5 ; -3 ; 7 ; -5 ; 9 ; -7 ; 13 ; -11 ; 25 ; -23 }
Vậy n \(\in\){ 2 ; 0 ; 3 ; -1 ; 4 ; -2 ; 5 ; -3 ; 7 ; -5 ; 9 ; -7 ; 13 ; -11 ; 25 ; -23 }
# HOK TỐT #
n - 1 ∈ Ư(24)
⇒n - 1 ∈ { 1 ; -1 ; 2 ; -2 ; 3 ; -3 ; 4 ; -4 ; 6 ; -6 ; 8 ; -8 ; 12 ; -12 ; 24 ; -24 }
⇒n ∈ { 2 ; 0 ; 3 ; -1 ; 4 ; -2 ; 5 ; -3 ; 7 ; -5 ; 9 ; -7 ; 13 ; -11 ; 25 ; -23 }
Vậy n ∈ { 2 ; 0 ; 3 ; -1 ; 4 ; -2 ; 5 ; -3 ; 7 ; -5 ; 9 ; -7 ; 13 ; -11 ; 25 ; -23 }
a) Ta có: \(n+1\inƯ\left(5\right)\)
\(\Rightarrow n+1\in\left\{1;5\right\}\)
\(\Rightarrow n\in\left\{0;4\right\}\)
_Học tốt_
2n+ 5 là số lẻ mà bọi của 4 là số chẵn
vậy ước của 2n + 1 và 2n + 5 không là 4 với mọi n thuộc N
học tốt
=> \(\left(n-2\right)\in\left\{-3;-1;3;1\right\}\)
=> \(n\in\left\{-1;1;5;3\right\}\)