Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm các số hữu tỉ dương x,y,z biết:
\(\frac{1}{x+\frac{1}{y+\frac{1}{z}}}=1-\frac{1}{2+\frac{1}{3}}\)
\(1-\frac{1}{2+\frac{1}{3}}=1-\frac{1}{\frac{7}{3}}=1-\frac{3}{7}=\frac{4}{7}=\frac{1}{\frac{7}{4}}=\frac{1}{1+\frac{3}{4}}=\frac{1}{1+\frac{1}{\frac{4}{3}}}=\frac{1}{1+\frac{1}{1+\frac{1}{3}}}\)
Vậy, x = 1; y = 1; z = 3
Bài 2 :
Ta có : x - y = xy => x = xy + y = y ( x + 1 )
=> x : y = x + 1 ( vì y khác 0 )
Ta có : x : y = x - y => x + 1 = x - y => y = -1
Thay y = -1 vào x - y = xy , ta được x - (-1) = x (-1) => 2x = -1 => x = -1/2
Vậy x = -1/2 ; y = -1
d) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
\(=\frac{x-1-2y+4+3z-9}{2-6+12}=\frac{x-2y+3z-6}{8}\)
\(=\frac{-10-6}{8}=\frac{-16}{8}=-2\)
\(\Rightarrow\hept{\begin{cases}x-1=-4\\y-2=-6\\z-3=-8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-4\\z=-5\end{cases}}\)
Vậy \(x=-3\); \(y=-4\); \(z=-5\)
e) \(x\left(x+y+z\right)=-12\); \(y\left(y+z+x\right)=18\); \(z\left(z+x+y\right)=30\)
\(\Rightarrow x\left(x+y+z\right)+y\left(y+z+x\right)+z\left(z+x+y\right)=-12+18+30\)
\(\Leftrightarrow\left(x+y+z\right)^2=36\)\(\Leftrightarrow\orbr{\begin{cases}x+y+z=-6\\x+y+z=6\end{cases}}\)
TH1: Nếu \(x+y+z=-6\)\(\Rightarrow x=\frac{-12}{-6}=2\); \(y=\frac{18}{-6}=-3\); \(z=\frac{30}{-6}=-5\)
TH2: Nếu \(x+y+z=6\)\(\Rightarrow x=\frac{-12}{6}=-2\); \(y=\frac{18}{6}=3\); \(z=\frac{30}{6}=5\)
Vậy các cặp giá trị \(\left(x;y;z\right)\)thỏa mãn là \(\left(2;-3;-5\right)\), \(\left(-2;3;5\right)\)
\(\frac{43}{30}=1+\frac{13}{30}\)
hay \(\frac{1}{x+\frac{1}{y+\frac{1}{z}}}\)= \(\frac{13}{30}\)
=> \(x+\frac{1}{y+\frac{1}{z}}\) = \(\frac{30}{13}=2+\frac{4}{13}\) => x = 2.
=> \(\frac{1}{y+\frac{1}{z}}\) = \(\frac{4}{13}\) => \(y+\frac{1}{z}\) = \(\frac{13}{4}\) = \(3+\frac{1}{4}\) => y = 3, z = 4.
Vậy x = 2, y = 3, z = 4.
mk nha =))
Ta có:
\(\frac{43}{30}=1+\frac{13}{30}\)
\(\Rightarrow\frac{1}{x+\frac{1}{y\frac{1}{x}}}=\frac{13}{30}\)
hay \(x+\frac{1}{y+\frac{1}{x}}=\frac{30}{13}\)
mà \(\frac{30}{13}=2+\frac{4}{13}\Rightarrow x=2\)
\(\Rightarrow\frac{1}{y+\frac{1}{z}}=\frac{4}{13}\)
hay \(y+\frac{1}{z}=\frac{13}{4}=3+\frac{1}{4}\Rightarrow y=3\)
\(\Rightarrow z=4\)
Vậy \(x=2;y=3;z=4\)