\(\ge\) 0 tm : a+3c=8 ; a+2b=9 ; a+b+c nhỏ nhất

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2018

Cộng theo vế:

\(a+3c+a+2b=17\)

\(\Rightarrow2a+3c+2b=17\)

\(\Rightarrow2\left(a+b+c\right)=17-c\le17\)

\(\Rightarrow a+b+c\le\dfrac{17}{2}\)

6 tháng 9 2017

Copppy ng khác kìa mn

6 tháng 9 2017

Từ \(a+3c=8;a+2b=9\Rightarrow\left(a+3c\right)+\left(a+2b\right)=17\)

\(\Leftrightarrow2a+2b+3c=17\Leftrightarrow2\left(a+b+c\right)+c=17\Rightarrow a+b+c=\frac{17-c}{2}\)

Vì \(a+b+c\) có GTLN nên \(\frac{17-c}{2}\) có GTLN => c có GTNN

Mà c không âm nên c = 0\(\Rightarrow a=8;b=\frac{1}{2}\)

Vậy \(\left(a;b;c\right)=\left(8;\frac{1}{2};0\right)\)

11 tháng 2 2017

Gồm 2 cách:

Cách 1: Theo bài ra ta có:
\(a+3c=8\)\(a+2b=9\)
\(\Longrightarrow 2a + 2b +3c = 17 \)

\(\Longrightarrow 2a+2b+2c = 17 - c \leq 17\) ( vì \(c \ge 0\))
\(a+b+c\) có giá trị lớn nhất
\(\Longrightarrow c=0\)
\(\Longrightarrow a = 8 \)

\(\Longrightarrow b = \dfrac{9 - 8}{2} = \dfrac{1}{2}\)

Cách 2: Từ gt ta có \(c = \dfrac{8-a}3\)\(b = \dfrac{9-a}2\)
Khi đó \(a + b + c = a + \dfrac{9-a}2 + \dfrac{8-a}3 = \dfrac{6a + (9-a)\cdot 3 + (8-a) \cdot 2}6 = \dfrac{a + 43}6\)
Do \(a+b+c \) có GTLN nên \( \dfrac{a+43}6\)có GTLN, suy ra \(a\) phải có GTLN
Mà do \( a, b,c \geqslant 0\) nên từ gt ta cũng có: \(a = 8 - 3c \leqslant 8 \)\(a = 9 - 2b \leqslant 9 \implies a \leqslant 8\)
Vậy \(a = 8\), khi đó thay vào gt ta tính được \(c = 0 \)\(b = \dfrac12\)

8 tháng 1 2017

a+3c=8

a+2b=9 => cần C/m 2a+2b-2c<=17

2a+3c+2b=17

a,b,c không âm=> 2b+3c>=2b-2c=> 2a+2b-2c<=17=> dpcm

đẳng thức trên xẩy ra khi c=0

N=0

c=0

a=8

b=1/2

14 tháng 4 2018

\(\left\{{}\begin{matrix}a,b,c\ge0\\4a+2b=9\\a+2c=4\end{matrix}\right.\) \(\begin{matrix}\left(1\right)\\\left(2\right)\\\left(3\right)\end{matrix}\)\(\left(2\right)-\left(3\right)\Leftrightarrow3a+2b-2c=5\)

\(\Leftrightarrow2\left(a+b-c\right)=5-a\)

\(M=\left(\dfrac{5-a}{2}\right)^2\) \(\left\{{}\begin{matrix}\left(2\right)=>a\le\dfrac{9}{4}\\\left(3\right)=>a\le4\end{matrix}\right.\) \(\Rightarrow0\le a\le\dfrac{9}{4}\)

<=> \(0\ge-a\ge\dfrac{-9}{4}\) \(\Leftrightarrow5\ge5-a\ge\dfrac{11}{4}\Leftrightarrow\dfrac{5}{2}\ge\dfrac{5-a}{2}\ge\dfrac{11}{8}\)

\(MinM=\dfrac{121}{64}\) khi a =9/4; b=0; c=7/8

14 tháng 4 2018

cảm ơn bn nh nha!

lần sau giúp mk nữa nhaeoeo

20 tháng 3 2016

bài này trên violympic nhung mình không biết cách giải chi tiết mà chỉ biết a=8

11 tháng 2 2022

Theo tc dãy tỉ số bằng nhau 

\(\frac{a-6b}{3c}=\frac{2b-9c}{a}=\frac{3c-3a}{2b}=\frac{a+2b+3c-6b-9c-3a}{3c+a+2b}\)

\(=\frac{a+2b+3a-3\left(2b+3c+a\right)}{3c+a+2b}=\frac{-2.72}{72}=-2\)

\(\Rightarrow a-6b=-6c;3c-3a=-4b\Leftrightarrow3a-4b=3c\)

ta có hệ \(\hept{\begin{cases}a-6b=-6c\\3a-4b=3c\end{cases}\Leftrightarrow\hept{\begin{cases}3a-18b=-18c\\3a-4b=3c\end{cases}}\Leftrightarrow\hept{\begin{cases}-14b=-21c\left(1\right)\\a=-6c+6b\left(2\right)\end{cases}}}\)

Theo giả thiết \(a+2b+3c=72\Rightarrow a=-2b-3c-72\)

\(\Rightarrow-2b-3c-72=-6c+6b\Leftrightarrow8b-3c+72=0\Leftrightarrow8b-3c=-72\)

(1) => \(\frac{b}{-21}=\frac{c}{-14}\)Theo tc dãy tỉ số bằng nhau 

\(\frac{b}{-21}=\frac{c}{-14}=\frac{8b-3c}{8\left(-21\right)-3\left(-14\right)}=-\frac{72}{-126}=\frac{4}{7}\Rightarrow b=-12;c=-8\)

Thay vào (2) vậy \(a=-6c+6b=-6\left(-8\right)+6\left(-12\right)=48-72=-24\)