K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2018

\(\left(1\right)\Leftrightarrow\left(y-x\right)\left(2y+x+2\right)=7\)

9 tháng 1 2021

1) Xét x=7k (k ∈ Z) thì x3 ⋮ 7

Xét x= \(7k\pm1\) thì x3 ⋮ 7 dư 1 hoặc 6.

Xét x=\(7k\pm2\) thì x3 ⋮ 7 dư 1 hoặc 6.

Xét x=\(7k\pm3\)\(\) thì x3 ⋮ 7 dư 1 hoặc 6.

Do vế trái của pt chia cho 7 dư 0,1,6 còn vế phải của pt chia cho 7 dư 2. Vậy pt không có nghiệm nguyên.

3) a, Ta thấy x,y,z bình đẳng với nhau, không mất tính tổng quát ta giả thiết x ≥ y ≥ z > 0 <=> \(\dfrac{1}{x}\le\dfrac{1}{y}\le\dfrac{1}{z}\) ,ta có: 

\(1=\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{z}\le\dfrac{3}{z}< =>z\le3\)

Kết luận: nghiệm của pt là ( x;y;z): (6:3:2), (4;4;2), (3;3;3) và các hoán vị của nó (pt này có 10 nghiệm).

 

Chọn A

1 tháng 5 2021

a.\(\left\{{}\begin{matrix}4x+2y=14\\2x-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x=18\\2x-2y=4\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2\\4-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\-2y=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

vậy  hệ pt có ndn \(\left\{2;0\right\}\)

1 tháng 5 2021

b.\(\left\{{}\begin{matrix}2x-4y=0\\3x+2y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-4y=0\\6x+4y=16\end{matrix}\right.\)

\(\left\{{}\begin{matrix}8x=16\\2x-4y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\4-4y=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2\\-4y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

vậy hệ pt có ndn \(\left\{2;1\right\}\)

20 tháng 3 2017

bạn hỏi Gemini đi anh ý biết đấy

20 tháng 3 2017

k minh di mink giai cho de lam

24 tháng 2 2018

help me

3 tháng 9 2020

Ta có phương trình :

\(x^2y+x^2=x^3-y+2x+7\)

\(\Leftrightarrow x^2y+y=x^3-x^2+2x+7\)

\(\Leftrightarrow y.\left(x^2+1\right)=x^3-x^2+2x+7\)

\(\Leftrightarrow y=\frac{x^3-x^2+2x+7}{x^2+1}\)

Do \(y\inℤ\rightarrow\frac{x^3-x^2+2x+7}{x^2+1}\inℤ\). Lại có \(x\inℤ\Rightarrow\hept{\begin{cases}x^3-x^2+2x+7\inℤ\\x^2+1\inℤ\end{cases}}\)

\(\Rightarrow x^3-x^2+2x+7⋮x^2+1\)

\(\Leftrightarrow x.\left(x^2+1\right)-\left(x^2+1\right)+x+8⋮x^2+1\)

\(\Leftrightarrow x+8⋮x^2+1\)

\(\Rightarrow\left(x+8\right)\left(x-8\right)⋮x^2+1\)

\(\Leftrightarrow x^2+1-65⋮x^2+1\)

\(\Leftrightarrow65⋮x^2+1\)\(\Leftrightarrow x^2+1\inƯ\left(65\right)\). Mà : \(x^2+1\ge1\forall x\)

\(\Rightarrow x^2+1\in\left\{1,5,13,65\right\}\)

\(\Leftrightarrow x^2\in\left\{0,4,12,64\right\}\)\(x^2\) là số chính phương với \(x\inℤ\)

\(\Rightarrow x^2\in\left\{0,4,64\right\}\Rightarrow x\in\left\{0,2,-2,8,-8\right\}\)

+) Với \(x=0\) thì \(y=7\) ( Thỏa mãn )

+) Với \(x=2\) thì \(y=3\) ( Thỏa mãn )

+) Với \(x=-2\) thì \(y=-\frac{9}{5}\) ( Loại )

+) Với \(x=8\) thì \(y=\frac{471}{65}\) ( Loại )

+) Với \(x=-8\) thì \(y=-9\) ( Thỏa mãn )

Vậy phương trình đã cho có nghiệm \(\left(x,y\right)\in\left\{\left(-8,-9\right);\left(0,7\right);\left(2,3\right)\right\}\)