K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2021

Trả lời:

\(A=2x^2+x=2\left(x^2+\frac{1}{2}x\right)=2\left(x^2+2.x\frac{1}{4}+\frac{1}{16}-\frac{1}{16}\right)\)

\(=2\left[\left(x+\frac{1}{4}\right)^2-\frac{1}{16}\right]=2\left(x+\frac{1}{4}\right)^2-\frac{1}{8}\ge-\frac{1}{8}\forall x\)

Dấu "=" xảy ra khi \(x+\frac{1}{4}=0\Leftrightarrow x=-\frac{1}{4}\)

Vậy \(Min_A=-\frac{1}{8}\Leftrightarrow x=-\frac{1}{4}\)

10 tháng 9 2016

LÀM dùm bn 1 câu khó nhất nhé;

B = (x-1)2 + ( y -2)2 +2016 -1 -4

GTNN B = 2011

10 tháng 9 2016

A=3(x^2-2x-1/3)

=3(x-1)^2 -4/3

ta có (x-1)^2 >= 0

suy ra a>= 0-4/3

dấu bằng xảy ra khi x-1=0

                                x=1

vậy giá trị nhỏ nhất của A là -4/3 khi x=1

9 tháng 8 2019

a) \(A=7x^2-2x+1=7\left(x^2-\frac{2}{7}x+\frac{1}{7}\right)\)

\(=7\left(x^2+\frac{2}{7}x+\frac{1}{49}+\frac{6}{49}\right)\)

\(=7\left[\left(x+\frac{1}{7}\right)^2+\frac{6}{49}\right]=7\left(x+\frac{1}{7}\right)^2+\frac{6}{7}\ge\frac{6}{7}\)

Vậy \(A_{min}=\frac{6}{7}\Leftrightarrow x=\frac{-1}{7}\)

7 tháng 12 2015

a) =(5x)^2-2*5x+1+3

   =(5x-1)^2+3

suy ra min=3

b) = -(x^2-2x+1)-1

    =-(x^2-1)^2-1

suy ra Max=-1

c)=(x^2-2x+1)+(y^2-4y+4)+1

  =(x^2-1)^2+(y^2-2)^2+1

suy ra Min=1

# mk ko chắc lắm đâu

21 tháng 5 2019

Xét \(A\ge-\frac{1}{2}\)

<=> \(\frac{6x+11}{x^2-2x+3}\ge-\frac{1}{2}\)

<=> \(x^2-2x+3\ge-12x-22\)

<=> \(x^2+10x+25\ge0\)<=> \(\left(x+5\right)^2\ge0\)(luôn đúng) 

Vậy \(MinA=-\frac{1}{2}\)khi x=-5

27 tháng 3 2018

\(A=\frac{x^2-2x+2013}{x^2}=\frac{x^2}{x^2}-\frac{2x+2013}{x^2}=1-\frac{2x+2013}{x^2}\)

Có: \(x^2\ge0\)

=> \(\frac{2x+2013}{x^2}\ge0\)

=> \(1-\frac{2x+2013}{x^2}\le1\)

=> \(\frac{x^2-2x+2013}{x^2}\le1\)

=> \(A_{max}=1\)khi \(1-\frac{2x+2013}{x^2}=1\)

=> \(\frac{2x+2013}{x^2}=0\)=> \(x=-1006,5\)

Hình như bạn lộn đề rồi chứ không tìm được \(A_{min}\)

27 tháng 3 2018

có khi nào bạn nhầm ko chứ đề đúng mà