Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(110b=\overline{bb0}\le\overline{bba}\le\overline{bb9}=\overline{bb0}+9\le\overline{bbb}+9\le b\cdot111+9b=b\cdot120.\)
\(\Rightarrow110b\le\overline{bba}\le120b\)(1).
Tương tự ta có: \(1000b\le\overline{bccd}\le2000b\)(2)
Từ (1) và (2) suy ra:
\(\frac{1000b}{120b}\le\frac{\overline{bccd}}{\overline{bba}}=a\cdot a\le\frac{2000b}{110b}\Rightarrow8,33< a\cdot a< 18,18\)(*)
d lẻ nên bccd lẻ => a lẻ.
a lẻ thỏa mãn (*) => a = 3. => d = 7.
Bài toán trở thành: 9xbb3 = bcc7
<=> 9*(110b +3) = 1000b + 110c +7
<=> 20 = 10b +110c
<=>2 = b + 11c. Suy ra c = 0 và b = 2.
Vậy a = 3; b = 2; c = 0 và d = 7. ta có: 3x3x223 = 2007.
Vì d là số lẻ nên a cũng là số lẻ
Vì a,b,c khác nhau nên a không thể là 1,5,9
Vậy a có thể là 3 hoặc 7
Xét a=3 ta có :
3 x 3 x 3bb =7bcc
9 x 3bb=7bcc
9 x (110 x b +3)=1000 x b+110 x c + 7
990 x b +27 =1000 x b +110 x c +7
20 = 10 xb + 110 x c Chỉ xẩy ra khi 2 = b + 11 x c Chỉ xẩy ra khi b = 2 ; c = 0.
Những số tự nhiên cần tìm là : a = 3; b = 2; c = 0; d = 7
Xét a = 7 ta thấy không bao giờ xẩy ra vì 7 x 7 x bba sẽ là số có năm chữ số.
Đáp số: a = 3; b = 2; c = 0; d = 7
Bài 5:
Vì số cần tìm nhỏ nhất nên ta lần lượt thử chọn với các giá trị số nhỏ nhất.
- Giả sử số tự nhiên có dạng 11111a
=> 111110 + a chia hết cho 1987. Vì 111110 chia 1987 dư 1825
=> a chia 1987 dư 162 ( vô lí - 162 > a).
- Giả sử số tự nhiên có dạng 11111ab
=> 1111100 + ab chia hết cho 1987. Vì 1111100 chia 1987 dư 367=> ab chia 1987 dư 1620 ( vô lí - 1620 > ab)
- Giả sử số tự nhiên có dạng 11111abc
=> 11111000 + abc chia hết cho 1987. Vì 11111000 chia 1987 dư 1683
=> abc chia 1987 dư 304. Mà abc nhỏ nhất
=> abc = 304
Vậy số tự nhiên là 11111304
a)a,b x 9,9 = aa,bb (a khác 0)
ab x 99 = aabb (cùng nhân cả 2 vế với 100)
ab x 9 x 11 = a0b x 11
ab x 9 = a0b
(a x 10 + b) x 9 = a x 100 + b
a x 90 + b x 9 = a x 100 + b
a x 10 = b x 8 (cùng bớt 2 vế đi a x 10 và b)
a x 5 = b x 4
Vì a x 5 chia hết cho 5 nên b x 4 chia hết cho 5
Mà 4 không chia hết cho 5\(\Rightarrow\)b chia hết cho 5 nên b = 0 hoặc 5
Vì a khác 0 nên b khác 0 . Vậy b = 5 \(\Rightarrow\)a = 4
b) 0,abc = \(\frac{1}{a+b+c}\)
0,abc x (a + b + c) = 1
abc x (a + b + c) = 1000
1000 = 2 x 500 = 4 x 250 = 5 x 200 = 8 x 125 = 10 x 100 = 20 x 50 = 25 x 40
Thử các trường hợp chỉ có 1 + 2 + 5 = 8
Vậy số đó là 125
c)a,b x 2 = a + b
ab x 2 = (a + b) x 10
ab x 2 = a x 10 + b x 10
(a x 10 + b) x 2 = a x 10 + b x 10
a x 20 + b x 2 = a x 10 + b x 10
a x 10 = b x 8 (cùng bớt 2 vế đi a x 10 và b x 2)
a x 5 = b x 4
Giải tương tự như câu a
Gọi số cần tìm là (abcde); đ/k: 0<a,b,c,d,e < 9 theo bài ra ta có:
(abcde) = 45 x a x b x c x d x e
=> (abcde) phải là số chia hết cho 5 (bởi vì tích có thừa số 5).
=> e = 0 (loại) hoặc e = 5 (thoả mãn); a,b,c,d,e đều là số lẻ (*1)
* Mặt khác ta lại có: (a,b,c,d,e) = (abc) x 100 + (de)
=> (abc) x 100 + (de) = 45 x a x b x c x 5 = 9 x 5 x 5 x a x b x c = 9 x 25 x a x b x c.
=> (de) hay (d5) phải là số chia hết cho 25 => chỉ có (de) = 75 thoả mãn
* Mặt khác: 10000 < (abcd) < 99999
=> 10000< 45 x a x b x c x 7 x 5 < 99999 => 6 < a x b x c < 64 (*2)
(abcde) phải là số chia hết cho 9 (Vì (abcde) = 5x9 x a x b x c x 7 x 5)
=> a+b+c+d+e = a+b+c+7+5 phải chia hết cho 9
=> a+b+c = 6 (loại) hoặc 15 (thoả mãn)hoặc 24 (loại) (đối chiếu với đk a,b,c đều lẻ (*1))
Vậy a+b+c = 15 => a,b,c là một trong các bộ chữ số sau: (7,7,1); (1,5,9); (3,3,9);(3,6,7);(5,5,5). Đối chiếu với điều kiện (*2) ở trên => Chỉ có (7,7,1) thoả mãn hay a=7; b=7; c = 1.
Vậy số cần tìm là: 77175
tk nha, thanks
DỄ NHƯNG BẠN PHẢI TICH MÌNH TRƯỚC MÌNH MỚI NÊU CÁCH GIẢI
tich di da khac lam