K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2020

                                                        Bài giải

\(A+B=\left|A\right|+\left|B\right|\) khi \(\hept{\begin{cases}A\ge0\\B\ge0\end{cases}}\)

\(A+B=\left|B\right|-\left|A\right|\)khi \(\hept{\begin{cases}B\ge0\\A< 0\end{cases}}\)

7 tháng 2 2018

Theo đề bài ta có :

\(a+b+b+c+c+a=-3-5+10\)

\(\Rightarrow\)\(2a+2b+2c=2\)

\(\Rightarrow\)\(2\left(a+b+c\right)=2\)

\(\Rightarrow\)\(a+b+c=\frac{2}{2}=1\)

Do đó :

\(a=a+b+c-\left(b+c\right)=1-\left(-5\right)=6\)

\(b=a+b+c-\left(c+a\right)=1-10=-9\)

\(c=a+b+c-\left(-3\right)=1+3=4\)

Vậy \(a=6\)\(;\)\(b=-9\)và \(c=4\)

Chúc bạn học tốt 

các bạn trả lời nhanh mình đang vội

28 tháng 3 2020

a) | x + 5 | - ( -17 ) = 20

=> | x + 5 | = 3

=> x + 5 = 3 hoặc x + 5 = -3

=> x = -2 hoặc x = -8

23 tháng 1 2017

ta thấy 12=(-6).(-2)=6.2=2.6=(-2).(-6)

=> a\(\in\){-6;6;2;-2}

b\(\in\){-2;2;6;-6}

vậy............

6 tháng 4 2017

đạt ngu 

18 tháng 3 2017

ko biet lam

6 tháng 2 2021

a/ \(\left\{{}\begin{matrix}a+b=5\\b+c=-10\\a+c=-3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}a+b=5\\b+c=-10\\2\left(a+b+c\right)=-8\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}a+b=5\\b+c=-10\\\left(a+b+c\right)=-4\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}c=-9\\a=6\\b=-1\end{matrix}\right.\) (TM)

b/ \(\left\{{}\begin{matrix}ab=-2\\bc=-6\\ac=3\end{matrix}\right.\)

\(\Rightarrow a^2b^2c^2=36\)

=> \(\left[{}\begin{matrix}abc=6\\abc=-6\end{matrix}\right.\)

TH1 :  abc = - 6

Mà \(\left\{{}\begin{matrix}ab=-2\\bc=-6\\ac=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}c=3\\a=1\\b=-2\end{matrix}\right.\) (TM)

TH2 : abc =  6

Mà \(\left\{{}\begin{matrix}ab=-2\\bc=-6\\ac=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}c=-3\\a=-1\\b=2\end{matrix}\right.\) (TM)