Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt f(x) = x^4 + ax^3 + bx +b
xét f(-1)=0 và f(1) =0(vì f(x) chia hết cho a khi f(a) =0)
f(-1) = 1 - a -b + b = 1-a =0
+
f(1) = 1+a+b+b = 1+a+2b = 0
-------------------------------------------
=> 2+2b = 0
=> b= -1
=> 1+a-2 = 0
=> a=1
a) 2x-3=0 <=> x=\(\dfrac{3}{2}\) để \(\left(2x^2-ax+5\right):\left(2x-3\right)\) thì \(2x^2-ax+5=2\)
Thay x= \(\dfrac{3}{2}\) vào \(2x^2-ax+5\), ta được:
\(\dfrac{9}{2}-\dfrac{3}{2}a+5=2\)
<=> \(-\dfrac{3}{2}a=2-5-\dfrac{9}{2}\) <=>a=5
lười quá ~~
bài 1
vì đa thức bị chia bậc 2, đa thức chia bậc nhất
=> đa thức thương sẽ có dạng bx+c
theo đề ta có
\(2x^2-ax+5=\left(bx+c\right)\left(2x-3\right)+2\\ < =>2x^2-ax+5=2bx^2-3bx+2cx-3c+2\\ < =>2x^2-ax+5=2bx^2-x\left(2c-3b\right)-3c+2\\ < =>\left\{{}\begin{matrix}2x^2=2bx^2\\ax=x\left(2c-3b\right)\\5=2-3c\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}b=1\\c=-1\\a=2c-3b\end{matrix}\right.\\ =>a=2\left(-1\right)-3.1\\ =>a=-5\)
vậy a = -5
bài 2 ko hiểu sao mình ko làm được, chắc sai ở đâu đợi mình làm lại nhé
Đa thức \(x^2+3x-10\)có nghiệm \(\Leftrightarrow x^2+3x-10=0\)
Ta có: \(\Delta=3^2+4.10=49,\sqrt{\Delta}=7\)
\(\Rightarrow x_1=\frac{-3-7}{2}=-5;x_2=\frac{-3+7}{2}=2\)
-5 và 2 là hai nghiệm của đa thức \(x^2+3x-10\)
Để f(x)=ax3+bx2+5x-50 chia hết cho đa thức x2+3x-10 thì -5 và 2 cũng là hai nghiệm của đa thức f(x)=ax3+bx2+5x-50
Nếu x = -5 thì \(-125a+25b-25+50=0\Leftrightarrow5a-b=-1\)(1)
Nếu x = 2 thì \(8a+4b+10-50=0\Leftrightarrow2a+b=10\)(2)
Lấy (1) + (2), ta được: \(7a=9\Leftrightarrow a=\frac{9}{7}\)
\(\Rightarrow b=10-2.\frac{9}{7}=\frac{52}{7}\)
Vậy \(a=\frac{9}{7}\)và \(b=\frac{52}{7}\)