Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề phải là cho 1/a + 1/b + 1/c < = 1
Áp dụng tính chấ : 1/x+y < = 1/4.(1/x+1/y) thì :
A < = 1/4.(1/a+1/b+1/b+1/c+1/c+1/a)
= 1/2.(1/a+1/b+1/c)
< = 1/2 . 1 = 1/2
Dấu "=" xảy ra <=> a=b=c=3
Vậy .............
Tk mk nha
với a,b,c>0
áp dung bđt \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)( bđt svacxo) ta có :
A=\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)\(=\frac{a+b+c}{2}=\frac{2016}{2}=1008\)
=> min A=1008 dấu bằng xảy ra <=>a=b=c=672
Đặt \(x=a;y=\frac{b}{2};z=\frac{c}{3}\left(x,y,z>0\right)\) và\(x+y+z=xyz\)
Khi đó ta có: \(B=\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1+z^2}}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{1}{\sqrt{x^2+1}}=\sqrt{\frac{xyz}{x^2\left(x+y+z\right)+xyz}}\le\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}\le\frac{y}{2\left(x+y\right)}+\frac{z}{2\left(x+z\right)}\)
Tương tự có: \(\frac{1}{\sqrt{1+y^2}}\le\frac{x}{2\left(x+y\right)}+\frac{z}{2\left(y+z\right)};\frac{1}{\sqrt{1+z^2}}\le\frac{x}{2\left(x+z\right)}+\frac{y}{2\left(y+z\right)}\)
\(\Rightarrow B\le\frac{x+y}{2\left(x+y\right)}+\frac{x+z}{2\left(x+z\right)}+\frac{y+z}{2\left(y+z\right)}=\frac{3}{2}\)
Đẳng thức xảy ra khi \(x=y=z=\sqrt{3}\Rightarrow\hept{\begin{cases}a=\sqrt{3}\\b=2\sqrt{3}\\c=3\sqrt{3}\end{cases}}\)
1.
\(P=\frac{x}{2}+\frac{1}{2x}+\frac{5x}{2}\ge2\sqrt{\frac{x}{4x}}+\frac{5}{2}.1=\frac{7}{2}\)
Dấu "=" xảy ra khi \(x=1\)
2.
\(P=\frac{a}{100}+\frac{1}{a}+\frac{b}{10000}+\frac{1}{b}+\frac{c}{1000^2}+\frac{1}{c}+\frac{99}{100}a+\frac{9999}{10000}b+\frac{999999}{1000000}c\)
\(P\ge2\sqrt{\frac{a}{100a}}+2\sqrt{\frac{b}{10000b}}+2\sqrt{\frac{c}{1000000c}}+\frac{99}{100}.10+\frac{9999}{10000}.100+\frac{999999}{1000000}.1000=...\)
Bạn tự bấm máy tính
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=10\\b=100\\c=1000\end{matrix}\right.\)
3.
\(VT=\frac{a^2+b^2}{ab}+\frac{8ab}{\left(a+b\right)^2}\ge\frac{\left(a+b\right)^2}{2ab}+\frac{8ab}{\left(a+b\right)^2}\ge2\sqrt{\frac{8ab\left(a+b\right)^2}{2ab\left(a+b\right)^2}}=4\)
Dấu "=" xảy ra khi \(a=b\)
Áp dụng tính chất : xy < = (x+y)^2/4 thì :
D < = (a+b)^2/4.(a+b) + (b+c)^2/4.(b+c) + (c+a)^2/4.(c+a)
= a+b/4 + b+c/4 + c+a/4
= a+b+b+c+c+a/4
= a+b+c/2
= 1/2
Dấu "=" xảy ra <=> a=b=c=1/3
Vậy .............
Tk mk nha
câu này ở trong câu trả lời cảu tớ ấy vào phần hỏi đáp bạn tìm câu hỏi của tớ
đề câu 78
\(\sqrt{x\left(x+2\right)}+\sqrt{2x-1}=\sqrt{\left(x+1\right)\left(3x+1\right)}\)
Từ đề bài ta có : 1000=abc.(a+b+c)
Ta phân tích 1000 ra làm tích 2 số trong đó 1 số là số tự nhiên có 3 chữ số
1000=125.8=200.5=100.10=500.2=250.4
Trong các số trên chỉ có 1 số thỏa mãn tổng các chữ số của nó nhân với nó bằng 1000, đó là số 125.
Suy ra abc=125 ( bài này chỉ đúng khi abc có dấu gạch ở trên ko phải a.b.c)