Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thấy ngay \(p_6>2\text{ do đó: }VP\equiv1\left(\text{mod 8}\right)\text{ từ đó suy VP cũng đồng dư với 1 mod 8}\)
có bổ đề SCP LẺ chia 8 dư 1 do đó:
trong 5 số: \(p_1;p_2;...;p_5\text{ có 4 số chẵn; 1 số lẻ không mất tính tổng quát giả sử: }p_5\text{ lẻ}\Rightarrow16+p_5^2=p_6^2\text{(đơn giản)}\)
\(p+1=2a^2;p^2+1=2b^2\Rightarrow p\left(p-1\right)=2\left(b-a\right)\left(b+a\right)\)
\(\text{thấy ngay p lẻ}\Rightarrow UCLN\left(p^2+1,p+1\right)=1;\Rightarrow\left(a,b\right)=1\Rightarrow\left(b-a,a+b\right)=1\)
thấy ngay p>b-a nên: \(p=a+b;p-1=2a-2b\text{ hay:}a+b=2b-2a+1\Leftrightarrow3a=b+1\)
đến đây thì đơn giản
a) Nếu p=3 thì \(2^p+p^2=2^3+3^2=17\) là số nguyên tố
Nếu \(p\ge5\) thì \(2^p+p^2=\left(2^p+1\right)+\left(p^2-1\right)=\left(2^p+1\right)+\left(p-1\right)\left(p+1\right)\)
Khi p là số nguyên tố , \(p\ge5\)=> p lẻ và p không chia hết cho 3; do đó: \(\left(2^p+1\right)\)chia hết cho 3 và (p-1)(p+1) chia hết cho 3 \(\Rightarrow\left(2^p+p^2\right)\)chia hết cho 3 \(\Rightarrow p^2+2^p\)không là số nguyên tố
Khi p=2, ta có : \(2^p+p^2=2^2+2^2=8\)là hợp số
Vậy duy nhất có p=3 thỏa mãn.
b) \(a+b+c+d=7\Rightarrow b+c+d=7-a\Rightarrow\left(b+c+d\right)^2=\left(7-a\right)^2\)
Mặt khác: \(\left(b+c+d\right)^2\le3\left(b^2+c^2+d^2\right)\Rightarrow\left(7-a\right)^2\le3\left(13-a^2\right)\)
Lại có : \(\left(7-a\right)^2\le3\left(13-a^2\right)\Leftrightarrow49-14a+a^2\le39-3a^2\Leftrightarrow4a^2-14a+10\le0\)
Giải ra được : \(1\le a\le\frac{5}{2}\)
Vậy : a có thể nhận giá trị lớn nhất là \(\frac{5}{2}\), nhận giá trị nhỏ nhất là 1
1.
\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)
Do x, y nguyên dương nên số đã cho là SNT khi:
\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)
\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)
Thay vào kiểm tra thấy thỏa mãn
2. \(N=n^4+4^n\)
- Với n chẵn hiển nhiên N là hợp số
- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)
\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)
\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)
Mặt khác:
\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)
\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)
\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1
\(\Rightarrow\) N là hợp số
Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).
Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9
Nó cũng không thể chỉ chứa các chữ số 3 và 9 (sẽ chia hết cho 3)
Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)
Thử lại.
Với \(a-3b=1\Leftrightarrow a=3b+1\):
\(4a+1=12b+5\).
Đặt \(d=\left(12b+5,4b-1\right)\)
Suy ra \(\hept{\begin{cases}12b+5⋮d\\4b-1⋮d\end{cases}}\Rightarrow12b+5-3\left(4b-1\right)=8⋮d\Leftrightarrow d\inƯ\left(8\right)\)mà \(d\)lẻ nên \(d=1\).
\(a+b=3b+1+b=4b+1\)
\(16ab+1=16b\left(3b+1\right)=48b^2+16b+1=\left(12b+1\right)\left(4b+1\right)⋮\left(4b+1\right)\)
Do đó thỏa mãn.
Trường hợp còn lại tương tự, và cũng thỏa mãn.
Ta có:
\(\left(4a+1,4b-1\right)=1\Leftrightarrow\left(4a+1,4a+4b\right)=1\Leftrightarrow\left(4a+1,a+b\right)=1\)
\(\left(a+b\right)|\left(16ab+1\right)\Leftrightarrow\left(a+b\right)|\left(16ab+4a+4b+1\right)\Leftrightarrow\left(a+b\right)|\left(4a+1\right)\left(4b+1\right)\)
\(\Leftrightarrow\left(a+b\right)|\left(4b+1\right)\)(1)
\(16ab+1=16a\left(b+a\right)-16a^2+1=16a\left(a+b\right)-\left(4a-1\right)\left(4a+1\right)\)
\(\Rightarrow\left(a+b\right)|\left(4a-1\right)\)(2)
lại có: \(\left(4a-1\right)+\left(4b+1\right)=4\left(a+b\right)\)mà \(a,b\inℕ^∗\)
kết hợp với (1), (2) suy ra \(a+b=k\left(4b+1\right),k=\overline{1,3}\)
Suy ra \(\orbr{\begin{cases}a-3b=1\\3a-b=1\end{cases}}\).