K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2021

số đó là 1

31 tháng 8 2015

Nếu \(n=0\to n^{1997}+n^{1975}+1=1\) không phải là số nguyên tố.

Xét  \(n\) là số nguyên dương. Ta có  \(n^{1997}-n^2=n^2\left(n^{3\times665}-1\right)\vdots\left(n^3\right)^{665}-1\vdots n^3-1\vdots n^2+n+1.\) 

Suy ra \(n^{1997}-n^2\vdots n^2+n+1.\)  
Tương tự, \(n^{1975}-n=n\left(n^{3\times658}-1\right)\vdots\left(n^3\right)^{658}-1\vdots n^3-1\vdots n^2+n+1.\)
Từ đó ta suy ra \(n^{1997}+n^{1975}+1=\left(n^{1997}-n^2\right)+\left(n^{1975}-n\right)+\left(n^2+n+1\right)\vdots n^2+n+1.\)
Vì \(n^{1997}+n^{1975}+1\)  là số nguyên tố (chỉ có hai ước dương là 1 và chính nó) và \(n^2+n+1>1\), nên \(n^{1997}+n^{1975}+1=n^2+n+1.\) Suy ra \(\left(n^{1997}-n^2\right)+\left(n^{1975}-n\right)=0.\) Do \(n\)là số nguyên dương nên \(\left(n^{1997}-n^2\right)\ge0,\left(n^{1975}-n\right)\ge0.\) Vậy \(n=1.\)


Thử lại với \(n=1\to n^{1997}+n^{1975}+1=3\) là số nguyên tố. 

Đáp số \(n=1.\)

30 tháng 8 2020

dạng này đc gọi là dạng j thế câuk

21 tháng 5 2019

Đề bài: tìm tất cả các số nguyên tố p để 8p2+1 và 8p2-1 là số nguyên tố

Trả lời: Đây là dạng toán lớp 6 chứ

B1: Thử các snt p -> khi đạt gtri thỏa mãn

B2: Nếu p> số nt tìm đc ( lớn nhất ) Có dạng j

-> Cm vô lý.

2 tháng 12 2017

mình cũng không biết

27 tháng 4 2019

Ta có \(n^4-3n^2+1=\left(n^4-2n^2+1\right)-n^2\)

                                        \(=\left(n^2-1\right)^2-n^2\)

                                        =(n^2-n-1)(n^2+n-1)

   Để B là số nguyên tố thì 

  n^2-n-1=1,n^2+n-1 là số nguyên tố 

=>n=2 thỏa mãn

Vậy n=2

   

24 tháng 3 2020

khó quá . mik dở phần số nguyên tố lắm.

24 tháng 3 2020

\(1,\text{Nếu p;q cùng lẻ thì:}7pq^2+p\text{ chẵn};q^3+43p^3+1\text{ lẻ}\Rightarrow\text{có ít nhất 1 số chẵn}\)

\(+,p=2\Rightarrow14q^2+2=q^3+345\Leftrightarrow14q^2=q^3+343\)

\(\Leftrightarrow q^2\left(14-q\right)=343\text{ đến đây thì :))}\)

\(+,q=2\Rightarrow29p=9+43p^3\Leftrightarrow29p-43p^3=9\text{loại}\)

\(+,p=q=2\Rightarrow7.8+2=8+43.8+1\left(\text{loại}\right)\)