Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
A = a2 + 10a + 1964
= a2 + 2 . a . 5 + 52 + 1939
= (a + 5)2 + 1939
Vì A là số chính phương nên đặt A = k2 (k \(\in\) Z) \(\Rightarrow1939=\left(k-a\right)\left(k+a\right)\)
Đến đây chỉ cần xét các ước của 1939 là xong (Cho biết 1939 = 7 . 277).
Ta có: A = 1! + 2! + 3! +...+ n!
Với n = 1 thì 1! = 1 = 12 là số chính phương
Với n = 2 thì 2! + 1! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+ 1.2 + 1.2.3 = 9 = 32 là số chính phương
Với n \(\ge\) 4 thì 1! + 2! + 3! + 4! = 1 + 1.2 + 1.2.3 + 1.2.3.4 = 33 còn 5! ; 6! ;... đều tận cùng bằng 0
Do đó 1! + 2! + 3! +...+ n! có tận cùng bằng chữ số 3 nên không là số chính phương.
=> n \(\in\) {1; 3}
Vậy n \(\in\) {1; 3}
Do ab - ba là số chính phương. Suy ra ab >ab . suy ra a>b
ta có
ab - ba = 10a+b-10b-a=9a-9b=9*(a-b)=32*(a-b)
Để ab - ba là số chính phương thì a-b là số chính phương mà a-b<20
Suy ra a-b=0;1;4;9
*a-b=0. Suy ra ab =11
*a-b=1. Suy ra ab =67
*a-b=4. Suy ra ab =73
*a-b=9. Suy ra không tồn tại ab
Vậy ab =11;67;73