Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn có thể tham khảo ở đây:
Câu hỏi của Nguyen Cao Diem Quynh - Toán lớp 8 | Học trực tuyến
a.
\(a^2+a+43=k^2\) (\(k\in N;k>a\))
\(\Leftrightarrow4a^2+4a+172=4k^2\)
\(\Leftrightarrow\left(2a+1\right)^2+171=\left(2k\right)^2\)
\(\Leftrightarrow\left(2k\right)^2-\left(2a+1\right)^2=171\)
\(\Leftrightarrow\left(2k-2a-1\right)\left(2k+2a+1\right)=171\)
Pt ước số, bạn tự lập bảng
b.
\(a^2+81=k^2\)
\(\Leftrightarrow k^2-a^2=81\)
\(\Leftrightarrow\left(k-a\right)\left(k+a\right)=81\)
Bạn tự lập bảng ước số
a) Vi n2 + 2006 la so chinh phuong nen n2 + 2006 = a2 suy ra n2 - a2 = 2006 hay (n+a)x(n-a) = 2006
Ta có a - n + n + a = 2a chia hết cho 2 và a+n - a+n = 2n chia hết cho 2
Suy ra (ã-n)x(ã+n) có cùng tính chẵn lẻ
TH1 : a-n và a+n cũng là số lẻ suy ra (a+n) x (a-n) là số lẻ mà 2006 là số chẵn (loại)
TH2 : a-n và a+n cũng là số chẵn suy ra (a-n)x(a+n) là số chẵn
suy ra a-n chia hết cho 2 và a+n chia hết cho 2 nên (a-n)x(a+n) chia hết cho 4
mà 2006 ko chia hết cho 4 nè ko có giá trị nào của n thỏa mãn đề bài
Giá trị nhỏ nhất của p để p ; p+3 ; p+8 đều là số chính phương
p=1
có A chia hết cho 4 ,nhug ko chia hết cho 4^2
=>a không phải là số chính phương
________________________________________
li-ke cho mk nha bn Vũ Thùy Linh
Đặt k^2=n^2+31n+1984k2=n2+31n+1984 (k thuộc N)
Ta có n^2+30n+225< n^2+31n+1984< n^2+90n+2025n2+30n+225<n2+31n+1984<n2+90n+2025
\Rightarrow\left(n+15\right)^2< k^2< \left(n+45\right)^2⇒(n+15)2<k2<(n+45)2
Xét k2 trong khoảng trên được n = 565 và n = 1728 thỏa mãn đề bài.