\(a+\dfrac{25}{b+\dfrac{c}{c+\dfr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2017

ta có:\(\dfrac{a}{b}< \dfrac{c}{d}=>a.d< c.b\)

ad+ab<cb+ab

hay a.(d+b)<b.(c+a)

=>\(\dfrac{a}{b}< \dfrac{c+a}{d+b}\)(1)

ad<cb

=>ad+dc<bc+cd

d.(a+c)<c.(b+d)

=>\(\dfrac{a+c}{b+d}< \dfrac{c}{d}\)(2)

từ (1) và (2) ta có :

=>\(\dfrac{a}{b}< \dfrac{c+a}{d+b}\)\(< \dfrac{c}{d}\)

Tick đi ahihi :D

17 tháng 3 2017

nếu thì ???????????????????

gianroi

1 tháng 4 2017

Vãi Phân

2 tháng 4 2017

Đm không biết thì trả lời làm chi!!!!!!!!!!!!

23 tháng 6 2017

\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\)

Ta có:

Nếu:

\(\dfrac{2a+c}{2b+d}=\dfrac{a-c}{b-d}\Leftrightarrow\left(2a+c\right)\left(b-d\right)=\left(a-c\right)\left(2b+d\right)\)

\(\Leftrightarrow2a\left(b-d\right)+c\left(b-d\right)=a\left(2b+d\right)-c\left(2b+d\right)\)

\(\Leftrightarrow2ab-2ad+bc-cd=2ab+ad-2bc+cd\)

\(\Leftrightarrow ad=bc\)

\(\Leftrightarrow\dfrac{2a+c}{2b+d}=\dfrac{a-c}{b-d}\left(đpcm\right)\)

21 tháng 7 2017

Bài 2 : đề bài này chỉ cần a,b>0 , ko cần phải thuộc N* đâu

a, Áp dụng bất đẳng thức AM-GM cho 2 số lhoong âm a,b ta được :

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ba}}=2\) . Dấu "=" xảy ra khi a=b

b , Áp dụng BĐT AM-GM cho 2 số không âm ta được : \(a+b\ge2\sqrt{ab}\)

\(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{ab}}=\dfrac{2}{\sqrt{ab}}\)

Nhân vế với vế ta được :

\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2.2.\dfrac{\sqrt{ab}}{\sqrt{ab}}=4\left(đpcm\right)\)

Dấu "="xảy ra tại a=b

21 tháng 7 2017

Bài 1.

Vì a, b, c, d \(\in\) N*, ta có:

\(\dfrac{a}{a+b+c+d}< \dfrac{a}{a+b+c}< \dfrac{a}{a+b}\)

\(\dfrac{b}{a+b+c+d}< \dfrac{b}{a+b+d}< \dfrac{b}{a+b}\)

\(\dfrac{c}{a+b+c+d}< \dfrac{c}{b+c+d}< \dfrac{c}{c+d}\)

\(\dfrac{d}{a+b+c+d}< \dfrac{d}{a+c+d}< \dfrac{d}{c+d}\)

Do đó \(\dfrac{a}{a+b+c+d}+\dfrac{b}{a+b+c+d}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}< M< \left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)+\left(\dfrac{c}{c+d}+\dfrac{d}{c+d}\right)\)hay 1<M<2.

Vậy M không có giá trị là số nguyên.

20 tháng 7 2017

Theo đề bài ta có \(\dfrac{a}{b}=\dfrac{c}{d}\)

=> \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\) ( tính chất dãy tỉ số = nhau )

=> \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a-c}{b-d}\) ( tính chất dãy tỉ số = nhau )

20 tháng 7 2017

Bạn giải thích rõ chỗ suy ra đc không

15 tháng 5 2017

\(a=\dfrac{1}{3}-\dfrac{1}{4}=\dfrac{4-3}{12}=\dfrac{1}{12}\)

\(\rightarrow\) Số nghịch đảo của \(a\)\(12.\)

\(b=\dfrac{2}{7}.\dfrac{14}{5}-1=\dfrac{4}{5}-1=-\dfrac{1}{5}\)

\(\rightarrow\)Số nghịch đảo của \(b\)\(-5.\)

\(c=\dfrac{3}{4}-\dfrac{1}{25}.5=\dfrac{3}{4}-\dfrac{1}{5}=\dfrac{15-4}{20}=\dfrac{11}{20}\)

\(\rightarrow\) Số nghịch đảo của \(c\)\(\dfrac{20}{11}.\)

\(d=-8.\left(6.\dfrac{1}{24}\right)=-8.\dfrac{1}{4}=-2\)

\(\rightarrow\) Số nghịch đảo của \(d\)\(\dfrac{1}{-2}\) hay \(-\dfrac{1}{2}.\)

1 tháng 5 2018

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6 . số nghịch đảo của Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6 . số nghịch đảo của Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6 . số nghịch đảo của Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6 . số nghịch đảo của Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6