![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Do vế phải là số lẻ nên vế trái là số lẻ. Vì 2x là số chẵn nên 5y là số lẻ hay y là số lẻ.
Lại có x, y là số tự nhiên nên \(0\le2x;5y\le19\Rightarrow y\le3\)
Với y = 1, ta có x = 7.
Với y = 3, ta có x = 2.
Vậy ta tìm được hai cặp số thỏa mãn.
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ Để 42 chia hết cho 2x+5 => 2x+5 là ước của 42
=> 2x+5={1; 2; 6; 7; 21; 42}
+/ 2x+5=1 => x=-2 (Loại)
+/ 2x+5=2 => x=-3/2 (Loại)
+/ 2x+5=6 => x=1/2 (Loại)
+/ 2x+5=7 => x=1 (Nhận)
+/ 2x+5=21 => x=8 (Nhận)
+/ 2x+5=42 => x=37/2 (Loại)
Đáp số: x=1 và x=8
b/ Do x-1 là ước của 24 => x-1={1; 2; 3; 4; 6; 8; 12; 24}
=> x={2; 3; 4; 5; 7; 9; 13; 25}
ta có:(câu b)
Ư(24)=(1,2,3,4,6,8,12,24)
suy ra:
x-1 thuộc (1,2,3,4,6,8,12,24)
vậy:
x thuộc (1+1,2+1,3+1,4+1,6+1,8+1,`12+1,24+1)
x thuộc (2,3,4,5,7,9,13,5)
"nếu mình làm sai thì mong bạn thông cảm nhé" :D
![](https://rs.olm.vn/images/avt/0.png?1311)
gải
Vì 2x + 5y = 19
=>(2.5) + (x.y)
= 10 + (x . y)
đề sai rùi
![](https://rs.olm.vn/images/avt/0.png?1311)
bn có lỗi đâu mà xin, bn bảo ai đó giải giúp mk đi ....nếu có thể....
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1 : 2x.4x+2.8x+3=524288
=> 2x.(22)x+2.(23)x+3 = 219
=> 2x.22x+2.23x+3 = 219
=> 2x+2x+2+3x+3 = 219
=> x+2x+2+3x+3 = 19
=> (x+2x+3x)+2+3 = 19
6x+5 = 19
6x = 19-5
6x =14
x = 7/3
Bài 2 : (a+b)3 = aba
=> a và b mọi số tự nhiên ( ĐK : \(\forall a,b\in N\) và \(a,b\ne0\)
\(2^x.4^{x+2}+8^{x+3}=524288\)
\(2^x.2^{2\left(x+2\right)}.2^{3\left(x+3\right)}=524288\)
\(2^x.2^{2x+4}.2^{3x+9}=524288\)
\(2^{x+2x+4+3x+9}=524288\)
\(2^{6x+13}=524288\)
\(2^{6x}.2^{13}=2^{19}\)
\(2^{6x}=2^{19}:2^{13}\)
\(2^{6x}=2^6\)
\(\Rightarrow6x=6\)
\(\Rightarrow x=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Vì số đó chia cho 6 dư 5; chia 19 dư 2 nên khi ta thêm vào số đó 55 đơn vị thì trở thành số chia hết cho cả 6 và 19
Ta có: \(\left\{{}\begin{matrix}a+55⋮6\\a+55⋮19\end{matrix}\right.\) ⇒ a + 55 \(\in\) BC(6; 19)
6 = 2.3; 19 = 19; BCNN(6; 19) = 2.3.19 = 114
⇒ BC(6; 19) = {0; 114; 228; 342;...;}
a \(\in\) { - 55; 59; 173;...;}
Vì a là số tự nhiên nhỏ nhất nên a = 59
a + 55 \(\in\) B(114)
⇒ a = 114.k - 55 (k ≥1; k \(\in\) N)
Bài 2:
Vì số đó chia 5 dư 1 chia 21 dư 3 nên khi số đó thêm vào 39 đơn vị thì trở thành số chia hết cho cả 5 và 21
Ta có: a + 39 ⋮ 5; a + 39 ⋮ 21 ⇒ a + 39 \(\in\) BC(5; 21)
5 = 5; 21 = 3.7 BCNN(5; 21) = 3.5.7 = 105
⇒BC(5; 21) = {0; 105; 210;...;}
a+ 39 \(\in\) {0; 105; 210;...;}
a \(\in\) {-39; 66; 171;...;}
Vì a là số tự nhiên nhỏ nhất nên a = 66
a + 39 ⋮ 105
⇒ a = 105.k - 39 (k ≥1; k \(\in\) N)