Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ƯCLN(a;b) = 16
a = 16.d; b = 16.k; (d;k) = 1; d;k ≥ 1
Theo bài ra ta có: 16.k.16.d = 240.16
k.d = 240.16:(16.16)
k.d = 15
15 = 3.5 Ư(15) = {1; 3; 5;15}
(k;d) = (1;15); (3;5); (5; 3); (15; 1)
Lập bảng ta có:
k | 1 | 3 | 5 | 15 |
a = k.16 | 16 | 48 | 80 | 240 |
d | 15 | 5 | 3 | 1 |
b=d.16 | 240 | 80 | 48 | 16 |
Vì 16 < a < b nên (a; b) = (48; 80)
ƯCLN(a;b) = 16
a = 16.d; b = 16.k; (d;k) = 1; d;k ≥ 1
Theo bài ra ta có: 16.k.16.d = 240.16
k.d = 240.16:(16.16)
k.d = 15
15 = 3.5 Ư(15) = {1; 3; 5;15}
(k;d) = (1;15); (3;5); (5; 3); (15; 1)
Lập bảng ta có:
k | 1 | 3 | 5 | 15 |
a = k.16 | 16 | 48 | 80 | 240 |
d | 15 | 5 | 3 | 1 |
b=d.16 | 240 | 80 | 48 | 16 |
Vì 16 < a < b nên (a; b) = (48; 80)
Đặt : a = 16x và b = 18y
Ta có : 16 ( x + y ) = 128
=> x + y = 8
=> x = 7 và y = 1
Vì a > b nên ta có a = 16x = 16.7 = 112
b = 128 - 112 = 16
Vậy ...
Vì ƯCLN(a, b) = 16 => ta gọi a = 16n, b = 16m.
16n + 16m = 128
=> 16(m + n) = 128
=> n + m = 128 : 16 = 8
8 = 0 + 8 = 1 + 7 = 2 + 6 = 3 + 5 = 4 + 4
Vì a > b => n > m => n có thể bằng 8; 7; 6; 5
m có thể bằng 0; 1; 2; 3
Vì a > b => loại bỏ trường hợp 4 + 4
=> (a; b) lần lượt là (128; 0) , (112; 16) ; (96; 32) ; (80; 48)
Ta có : ƯCLN(a,b) . BCNN(a,b) = a.b
\(\Rightarrow a.b=336.12=4032\)
Vì ƯCLN (a,b) = 12
\(\Rightarrow\left\{{}\begin{matrix}a=12k\\b=12q\end{matrix}\right.\left(ƯCLN\left(k,q\right)=1;k>q\right)\)
Mà : a.b = 4032
\(\Rightarrow12k.12q=4032\Rightarrow\left(12.12\right)\left(k.q\right)=4032\)
\(\Rightarrow144.k.q=4032\Rightarrow k.q=28\)
+) \(\Rightarrow\left\{{}\begin{matrix}k=28\\q=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=28.12\\b=1.12\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=336\\b=12\end{matrix}\right.\)
+) \(\Rightarrow\left\{{}\begin{matrix}k=14\\q=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=14.12\\b=12.2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=168\\b=24\end{matrix}\right.\)
+) \(\Rightarrow\left\{{}\begin{matrix}k=7\\q=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=7.12\\b=4.12\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=84\\b=48\end{matrix}\right.\)
Vậy a = 336 ; b = 12
a = 168 ; b = 24
a = 84 ; b = 48
Ta có : ƯCLN(a,b) . BCNN(a,b) = a.b
⇒a.b=336.12=4032⇒a.b=336.12=4032
Vì ƯCLN (a,b) = 12
⇒{a=12kb=12q(ƯCLN(k,q)=1;k>q)⇒{a=12kb=12q(ƯCLN(k,q)=1;k>q)
Mà : a.b = 4032
⇒12k.12q=4032⇒(12.12)(k.q)=4032⇒12k.12q=4032⇒(12.12)(k.q)=4032
⇒144.k.q=4032⇒k.q=28⇒144.k.q=4032⇒k.q=28
+) ⇒{k=28q=1⇒{a=28.12b=1.12⇒{a=336b=12⇒{k=28q=1⇒{a=28.12b=1.12⇒{a=336b=12
+) ⇒{k=14q=2⇒{a=14.12b=12.2⇒{a=168b=24⇒{k=14q=2⇒{a=14.12b=12.2⇒{a=168b=24
+) ⇒{k=7q=4⇒{a=7.12b=4.12⇒{a=84b=48⇒{k=7q=4⇒{a=7.12b=4.12⇒{a=84b=48
Vậy a = 336 ; b = 12
a = 168 ; b = 24
a = 84 ; b = 48
Trong công thức toán ta có ƯCLN * BCNN = a*b
Thế vào ƯCLN và BCNN
336*12=4032= a*b
4032=63*64
Vì a>b nên a=64
b=63
**** cho mk nha