Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm m,n nguyên dương sao cho \(\left(\frac{1}{2}\right)^n-\left(\frac{1}{2}\right)^m=\frac{1}{512}\)
Ta có \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n.3^2-2^n.2^2+3^n-2^n\)
\(=3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10.\left(3^n-2^{n-1}\right)\)chia hết cho 10
Ta có 3n+2-2n+2+3n-2n
= 3n.9-2n.4+3n-2n
= 3n(9+1)-2n(4+1)
= 3n.10-2n.5=3n.10-2n-1.10
Nhận thấy 3n.10 chia hết cho 10 với mọi số nguyên dương n; 2n-1.10 chia hết cho 10 với mọi số nguyên dương n
=> 3n+2-2n+2+3n-2n chia hết cho 10 với mọi số nguyên dương n
??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
\(2^m-2^n=256=2^8=>2^n\left(2^{m-n}-1\right)=2^8\left(1\right)\)
vì m khác n ,nên ta có:
+)nếu m-n=1 thì từ (1) ta có 2^n(2-1)=2^8
=>n=8;m=9
+)nếu m-n>2 thì 2^m-n -1 là 1 số lẻ lớn hơn 1 ,do đó vế trái của (1) chứa thừa số nguyên tố lẻ khi phân tích ra thừa số nguyên tố,còn vế phải của (1) chỉ chứa thừa số nguyên tố 2.Mâu thuẫn
Vậy n=8;m=9 là đáp số duy nhất
giả thiết m và n nguyên tố cùng nhau
nên ƯCLN(m;n)=1
Mà m^2chia hết cho n
Và n^2 chia hết cho m
m,n nguyên dương lẻ
nên m=n=1
Do đó m^2+n^2+2=4
4.m.n=4
Vậy ta được đpcm
ta có
2^m+2^n=2^m+n
2^m+n-2^m-2^n=0
2^m.2^n-2^m-2^n=0
2^m(2^n-1)-2^n=0
2^m(2^n-1)-2^n+1=1
2^m(2^n-1)-(2^n-1)=1
(2^n-1)(2^m-1)=1
ta có 1= 1.1=-1.(-1)
lập bảng và làm tiêp nhé, k cho mình nha
m+n ở số mũ nha.
Bài 1 :
Ta có :
\(\left(x-1\right)^6=\left(x-1\right)^8\)
\(\Leftrightarrow\)\(x-1=\left(x-1\right)^2\)
\(\Leftrightarrow\)\(\left(x-1\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(1-x+1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(2-x\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\2-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)
Vậy \(x=1\) hoặc \(x=2\)
m^2 + 1 \(\ge1\) với mọi m . Mà m, n là số nguyên => 2^n > 1 => n là số nguyên không âm.
+) TH1: n = 0
=> m^2 + 1 = 1 => m = 0 ( thỏa mãn )
+) TH2: n = 1
=> m^2 + 1 = 2 => m^2 = 1 <=> m = 1 hoặc m = - 1 thỏa mãn
+) TH3: n> 1
=> 2^n \(⋮\)4
Mà m^2 + 1 chia 4 dư 1
=> loại
Vậy ( m; n ) \(\in\){ ( 0; 0) ; ( 1; 1) ; (-1; 1 ) }
Sửa lại một chút ở dòng thứ 8:
Mà m^2 + 1 chia 4 dư 1 hoặc 2 ( vì m^2 chia 4 dư 0 hoặc 1 )
Ta có: \(2^m-2^n=2^8\)
\(2^n\left(2^{m-n}-1\right)=2^8\)
\(2^{m-n}-1=1\)
\(2^1-1=1\)
\(m-n=1\)
\(2^8\left(2^{9-8}-1\right)=2^8\)
\(\Rightarrow\)\(m=9\)
\(n=8\)