K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2017

giả thiết m và n nguyên tố cùng nhau

nên ƯCLN(m;n)=1

Mà m^2chia hết cho n

Và n^2 chia hết cho m 

m,n nguyên dương lẻ

nên m=n=1

Do đó m^2+n^2+2=4

4.m.n=4

Vậy ta được đpcm

7 tháng 10 2017

má mới học lớp 4 sao má bít được

7 tháng 10 2017

???????????????????

23 tháng 10 2017

??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

21 tháng 4 2021

giả sử \(m\ge n\)

để m.n lớn nhất thì m=n=45(90:2) nhưng vì nguyên tố cùng nhau nên m=47;n=43(\(m;n\ne44;46\)vì m;n phải nguyên tố cùng nhau)

vậy \(\left(m;n\right)\in\left\{\left(47;43\right);\left(43;47\right)\right\}\)

11 tháng 3 2017

dài thế ai mà làm được

5 tháng 4 2017
ai tk mk thì mk tk lại
6 tháng 6 2019

Từ \(0\le x\le y\le1\) và \(2x+y\le2\Rightarrow2x^2+xy\le2x\)(nhân cả 2 vế với \(x\ge0\))

                                                                  \(\left(y-x\right)y\le y-x\)(nhân cả 2 vế của \(0\le y\le1\)với \(y-x\ge0\)(do \(x\le y\))

Cộng từng vế ta có : 

\(2x^2+xy+\left(y-x\right)y\le2x+y-x\)

\(\Leftrightarrow2x^2+y^2\le x+y\)

\(\Leftrightarrow\left(2x^2+y^2\right)^2\le\left(x+y\right)^2\)

Mặt khác \(\left(x+y\right)^2=\left(\frac{1}{\sqrt{2}}.\sqrt{2}x+1.y\right)^2\le\left(\frac{1}{2}+1\right)\left(2x^2+y^2\right)\)(bất đẳng thức Bunhiacopxki)

\(\Rightarrow\left(2x^2+y^2\right)^2\le\frac{3}{2}\left(2x^2+y^2\right).\)

\(\Leftrightarrow2x^2+y^2\le\frac{3}{2}.\)(đpcm)

Chúc học tốt 

24 tháng 3 2020

Ta có: \(\hept{\begin{cases}a+b+c=20\\16a+2b+c=80\end{cases}}\)

=> \(\left(16a+2b+c\right)-\left(a+b+c\right)=80-20=60\)

=> \(15a+b=60\)

=> b = 60 - 15 a 

Mà a; b; c là số nguyên dương => a \(\in\){ 1; 2; 3; }

Khi đó: \(a+b+c=a+60-15a+c=20\)

=> \(c=14a-40\)

+) Với a = 1 => c = -26 ( loại )

+) Với a = 2 => c = -12 loại 

+) Với a = 3 => c = 2 ( nhận ) khi đó b = 15 

Vậy : M = 25.3 - 4.15 -2007.2= -3999.

17 tháng 11 2015

=> p^2 = (m-1)(m+n). => m+n thuộc ước dương của p^2 . mà p là số nguyên tố => m+n thuộc p,1,p^2. mà m+n> m-1=> m+n = p^2 => m-1 =1 => m=2=> p^2 = n+2(đpcm)

14 tháng 4 2016

tại sao lại m+n lại là ước dương

25 tháng 5 2016

m và n là số tự nhiên => m , n ≥ 0 

p là số nguyên tố 

Thỏa mãn \(\frac{p}{m-1}=\frac{m+n}{p}\) <=> p2 = ( m – 1 ).( m + n ) 

Do ( m – 1 ) và ( m + n ) là các ước nguyên dương của p2

Chú ý : m – 1< m + n (1) 

Do p là số nguyên tố nên p2 chỉ có các ước nguyên dương là 1, p và p2 (2) 

Từ (1) và (2) ta có m – 1 = 1 và m + n = p2. Khi đó m = 2 và tất nhiên 2 + n = p2

Vậy p2 = n + 2 (Đpcm).

25 tháng 5 2016

m và n là số tự nhiên => m , n ≥ 0 
p là số nguyên tố 
Thỏa mãn p/m1 =m+n/p  <=> p2 = ( m – 1 )( m + n ) 
Do ( m – 1 ) và ( m + n ) là các ước nguyên dương của p2
Chú ý : m – 1< m + n ( 1 ) 
Do p là số nguyên tố nên p2 chỉ có các ước nguyên dương là 1, p và p2 ( 2 ) 
Từ ( 1 ) và ( 2 ) ta có m – 1 = 1 và m + n = p2.
Khi đó m = 2 và tất nhiên 2 + n = p2
Do đó A = p2 - n = 2