K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 8 2022

Lời giải:

a. Gọi 2 số cần tìm là $a$ và $b$

Theo bài ra: 

$a+b=2\Rightarrow b=2-a$

$ab=\frac{3}{4}$

Thay $b=2-a$ thì:

$a(2-a)=\frac{3}{4}$

$\Leftrightarrow a^2-2a+\frac{3}{4}=0$

$\Leftrightarrow (a-\frac{3}{2})(a-\frac{1}{2})=0$

$\Leftrightarrow a=\frac{3}{2}$ hoặc $a=\frac{1}{2}$

Nếu $a=\frac{3}{2}$ thì $b=2-a=\frac{1}{2}$

Nếu $a=\frac{1}{2}$ thì $b=2-a=\frac{3}{2}$

b,c: Tương tự

 

AH
Akai Haruma
Giáo viên
30 tháng 8 2022

d. 

Gọi hai số cần tìm là $a$ và $b$

Theo bài ra ta có:

$ab=12$

$a^2+b^2=25$

$\Leftrightarrow (a+b)^2-2ab=25$

$\Leftrightarrow (a+b)^2=25+2ab=25+2.12=49$

$\Leftrightarrow a+b=\pm 7$

Đến đây lại đưa về dạng tìm 2 số biết tổng và tích giống như phần a.

 

4 tháng 8 2018

Hãy tích cho tui đi

khi bạn tích tui

tui không tích lại bạn đâu

THANKS

1: Số lớn là 60:4*5=75

Số bé là 75-60=15

2: Số lớn là 147*6/7=126

Số bé là 147-126=21

3:

Số thứ nhất là (100+42)/2=142/2=71

Số thứ hai là 71-42=29

5 tháng 10 2021

12 số 0 nha bn

5 tháng 10 2021

Bạn giải chi tiết và giả thích giúp mik nha

5 tháng 6 2023

Có thể rút a từ hoặc ngược lại

 

14 tháng 3 2023

Giả sử 3 số tự nhiên đó lần lượt là a, b, c. Theo yêu cầu đề bài, ta có phương trình:

a + b + c = abc

Chia cả 2 vế của phương trình trên cho abc, ta có:

1/a + 1/b + 1/c = 1

Đây là phương trình Diophantus của bài toán. Chúng ta sẽ giải phương trình này bằng phương pháp thủ công như sau:

Ta có thể giả sử a ≤ b ≤ c (do tính chất giao hoán và kết hợp của phép nhân)

Trường hợp a = 1. Ta có 1/b + 1/c = 1, kết hợp với a ≤ b ≤ c, ta có b ≥ 2, c ≥ 3. Thử từng trường hợp b = 2, 3, ... ta sẽ tìm ra được 1 nghiệm là (1, 2, 3)

Trường hợp a = 2. Ta có 1/b + 1/c = 1/2. Kết hợp với a ≤ b ≤ c, ta có b ≥ 3, c ≥ 5. Thử từng trường hợp b = 3, 4, ... và kiểm tra nghiệm c tương ứng, ta không tìm được nghiệm nào.

Trường hợp a = 3. Ta có 1/b + 1/c = 2/9. Tương tự, ta có b ≥ 4, c ≥ 13. Thử từng trường hợp b = 4, 5, ... và kiểm tra nghiệm c tương ứng, ta không tìm được nghiệm nào.

Vậy nghiệm duy nhất của phương trình ban đầu là (1, 2, 3).

22 tháng 8 2015

Ta có a.b.c = a+b+c 
Giả sử a = b = c ta có a^3 = 3a => a^2 = 3. Ptrình này không cho nghiệm nguyên dương, nên a; b; c là 3 số nguyên dương phân biệt. 
Tìm các số nguyên dương: 
Giả sử a là số lớn nhất trong 3 số. Ta có a + b + c = a.b.c < 3a. Hay tích b.c <3. Vì a; b; c là các số nguyên dương; b.c <3. Do b;c nguyên dương nên tích b,c nguyên dương hay b.c = 1 hoặc b.c =2. Mặt khác chứng minh được b khác c nên b và c chỉ có thể là 1 và 2. Ở đây ta giả sử c là 1. thì b là 2. (b khác 2 thì tích b.c > 3 là vô lý). 

Vậy ta có 1 + 2 + a = 1.2.a hay 3+a = 2a => a = 3. 
______________________________________________
li-ke cho mk nhé bn nguyễn thị huyền thương 

 

12 tháng 8 2019

Hai số nguyên mà tổng của chúng bằng tích của chúng là 0 và 0

12 tháng 8 2019

Gọi hai số nguyên đó là a và b

Theo đề, ta có: \(ab=a+b\)

\(\Leftrightarrow ab-a-b=0\)

\(\Leftrightarrow a\left(b-1\right)-\left(b-1\right)=1\)

\(\Leftrightarrow\left(a-1\right)\left(b-1\right)=1=1.1.=\left(-1\right).\left(-1\right)\)

\(TH1:\hept{\begin{cases}a-1=1\\b-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=2\end{cases}}\)

\(TH2:\hept{\begin{cases}a-1=-1\\b-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=0\\b=0\end{cases}}\)

7 tháng 3 2022

số 1: \(\left(63+9\right)+2=36\)

số 2: \(36-9=27\)

7 tháng 3 2022

Bài này mik nghĩ phải giải bằng cách lập hệ pt

Gọi số thứ nhất là a, gọi thứ 2 là b

Theo bài ra ta có:

\(\left\{{}\begin{matrix}a+b=63\\a-b=9\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a+b+a-b=63+9\\a-b=9\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2a=72\\a-b=9\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=36\\36-b=9\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=36\\b=27\end{matrix}\right.\)

21 tháng 7 2015

gọi ba số đó lần lượt là: x;y;z (x;y;z >0 )

theo đề ta có:

x+y+z=xyz

=>\(\frac{x+y+z}{xyz}=\frac{xyz}{xyz}\)

\(\Leftrightarrow\frac{x}{xyz}+\frac{y}{xyz}+\frac{z}{xyz}=1\)

\(\Leftrightarrow\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=1\)

Nếu \(x\ge y\ge z\ge1\)thì 

\(1=\frac{1}{yz}=\frac{1}{xz}=\frac{1}{xy}\le\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{z^2}=\frac{3}{z^2}\)

=>\(1\le\frac{3}{z^2}\)

\(\Leftrightarrow z^2\le3\)

nên chỉ có z=1 mới thỏa mãn \(z^2\le3\text{ và }z>0\)

suy ra 3 số đó là 1;2;3

gọi ba số đó lần lượt là: x;y;z (x;y;z >0 )

theo đề ta có:

x+y+z=xyz

=>x+y+zxyz =xyzxyz 

⇔xxyz +yxyz +zxyz =1

⇔1yz +1xz +1xy =1

Nếu x≥y≥z≥1thì 

1=1yz =1xz =1xy ≤1z2 +1z2 +1z2 =3z2 

=>1≤3z2 

⇔z2≤3

nên chỉ có z=1 mới thỏa mãn z2≤3 và z>0

suy ra 3 số đó là 1;2;3