
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 1:
a, sai
b, đúng
Bài 2:
a, Ư(15) = {1;3;5;15}
Vì n + 1 là ước của 15 nên ta có:
n + 1 = 1 => n = 0
n + 1 = 3 => n = 2
n + 1 = 5 => n = 4
n + 1 = 15 => n = 14
Vậy...
b, Ư(12) = {1;2;3;4;6;12}
Vì n + 5 là ước của 12 nên ta có:
n + 5 = 1 => n = -4 (loại)
n + 5 = 2 => n = -3 (loại)
n + 5 = 3 => n = -2 (loại)
n + 5 = 4 => n = -1 (loại)
n + 5 = 6 => n = 1
n + 5 = 12 => n = 7
Vậy...
Bài 3:
Ta có: abba = 1000a + 100b + 10b + a
= (1000a + a) + (100b + 10b)
= (1000 + 1)a + (100 + 10)b
= 1001a + 110b
= 11.(91a + 10b)
Vì 11(91a + 10b) \(⋮\)11 nên 11 là ước của số có dạng abba

\(\left(x,y\right)=18\Rightarrow\text{ Đặt }\hept{\begin{cases}x=18m\\y=18n\end{cases}}\left(m;n\right)=1;\left(m,n\inℕ^∗\right)\)
=> x + y = 90
<=> 18m + 18n = 90
=> m + n = 5
Ta có 5 = 1 + 4 = 2 + 3
Lập bảng xét các trường hợp :
m | 1 | 4 | 2 | 3 |
n | 4 | 1 | 3 | 2 |
a | 18 | 72 | 36 | 54 |
b | 72 | 18 | 54 | 36 |
Vậy các cặp (x;y) thỏa mãn là : (18 ; 72) ; (72 ; 18) ; (54;36) ; (36;54)

1. Gọi d là ước chung của n+3 và 2n+5
Ta có: n+3 \(⋮\)d , 2n+5\(⋮d\)
=> (2n+6)-(2n+5) chia hết cho d=> 1 chia hết cho d
Vậy ƯC của n+3 và 2n+5 là 1
2. giả sử 4 là ƯC của n+1 và 2n+5
Ta cs: n+1 \(⋮\)4 , 2n+5\(⋮\)4
=> (2n+5)-(2n+2) chia hết cho 4=> 3 chia hết cho 4(vô lý)
Vậy số 4 không thể là ƯC của n+1 và 2n+5.
Bạn ghét những đứa đặt tên dài, cậu có thể giải thích tại sao ở câu 1, n + 3=2n+6 được chứ, cả câu 2 n+1=2n+5 nữa. Cảm ơn!

1)
x - 18 = 3x + 4
=> x - 3x = 4 + 18
=> -2x = 22
=> x = 22 : (-2)
=> x = -11
Vậy x = -11

\(\left(\frac{2n+1}{n-3}=2+\frac{7}{n-3}=>n=\left\{4,10\right\}\right)\)
\(\frac{n^2+3}{n+1}=\frac{n^2-1+4}{n+1}=\left(n-1\right)+\frac{4}{n+1}=>n=\left\{0,1,3\right\}\)
\(n=2^a.3^b=>2^5.3=96\)
\(n=2^a=2^6=64\)
\(n=2^a.3^b=2^3.3^2=8.9=72\)

a) Gọi d = ƯC(n + 3; 2n + 5)
=> n + 3 chia hết cho d ; 2n + 5 chia hết cho d
=> 2(n+3) - (2n + 5) chia hết cho d
=> 2n + 6 - 2n - 5 chia hết cho d => 1 chia hết cho d => d = 1
Vậy......
b) Vì 2n + 5 là số lẻ nên 2n + 5 không chia hết cho 4
=> 4 không thể là ước chung của 2n + 5 và n + 1
Vậy...
bài làm
1)Gọi a = ƯC(n + 3; 2n + 5)
=> n + 3 chia hết cho a ; 2n + 5 chia hết cho a
=> 2(n+3) - (2n + 5) chia hết cho a
=> 2n + 6 - 2n - 5 chia hết cho a => 1 chia hết cho a => a= 1
Vậy...................
2) Vì 2n + 5 là số lẻ nên 2n + 5 không chia hết cho 4
=> 4 không thể là ước chung của 2n + 5 và n + 1
Vậy........................
hok tốt

?1 Số 18 là bội của 3 . ko là bội của 4 .Số 12 ko là ước của 4 và cũng ko là ước của 5.
?2 x thuộc (0;8;16;24;31;40)
?3 Ư( 12) = (1;2;3;4;6;12)
?4 Ư( 1 ) =1 . B( 1) = (0;1;2;3;4;5;...) mình ko chắc nha

Mọi ước chung của các số là ước của ƯCLN của các só đó.
Nếu a là ước của tích b·c, và ƯCLN(a, b) = d, thì a/d là ước của c.
Nếu m là số nguyên dương, thì ƯCLN(m·a0, m·a1, m·a2,…m·an) = m·ƯCLN(a0, a1, a2,… an).
Nếu m là số nguyên bất kỳ, thì ƯCLN(a + m·b, b) = ƯCLN(a, b). Nếu m ước chung (khác 0) của a và b, thì UCLN(a/m, b/m) =
ƯCLN(a, b)/m.
ƯCLN là một hàm có tính nhân theo nghĩa sau: nếu các số a1, a2,…,an là các số nguyên tố cùng nhau, thì ƯCLN(a1·a2·…an, b) =
ƯCLN(a1, b)·ƯCLN (a2, b)·…ƯCLN (an, b).
ƯCLN là hàm giao hoán: ƯCLN(a, b) = ƯCLN(b, a).
ƯCLN là hàm kết hợp: ƯCLN(a,b,c)= ƯCLN(a, ƯCLN(b, c)) = ƯCLN(ƯCLN(a, b), c).
ƯCLN (a, b) quan hệ chặt chẽ với BCNN(a, b): ta có: ƯCLN(a, b)·BCNN(a, b) = a·b.
II. Cách tìm ước chung lớn nhất( ƯCLN)
Phương pháp:
Để tìm UCLN các bạn thực hiện theo các bước sau
Bước 1: Phân tích mỗi số ra thừa số nguyên tố.
Bước 2: Chọn ra các thừa số nguyên tố chung
Bước 3: Nhân số nguyên tố chung với tích mũ chung nhỏ nhất trong 2 số sẽ được UCLN cần tìm.
Lưu ý:
a) Nếu các số đã cho không có thừa số nào chung thì ƯCLN của chúng bằng 1. Hai hay nhiều số có ƯCLN bằng 1 được gọi là những số nguyên tố cùng nhau.
b) Trong các số đã cho, nếu có số nhỏ nhất là ước cảu số còn lại thì ƯCLN của các số đã cho chính là số nhỏ nhất ấy.
Số có 18 ước số có dạng:
a.b².c² (trong đó a, b, c là các số nguyên tố)
Số đó có thể là: 2.3².5² = 450