Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đang rảnh, buồn ngủ nên giải cho tỉnh táo :D
Ta nhận thấy x=0 không phải là nghiệm của phương trình, vậy ta chia cả 2 vế của phương trình cho x2 khác 0, ta được:
\(6x^2+5x-38+\dfrac{5}{x}+\dfrac{6}{x^2}=0\)
\(\Leftrightarrow6\left(x^2+\dfrac{1}{x}\right)+5\left(x+\dfrac{1}{x}\right)-38=0\)
Đặt \(x+\dfrac{1}{x}=y\Rightarrow x^2+\dfrac{1}{x^2}=y^2-2\)
Ta được: \(6\left(y^2-2\right)+5y-38=0\)
Do đó: y1=2,5;y2=-10/3
Với y=2,5\(\Rightarrow x+\dfrac{1}{x}=2,5\Rightarrow x_1=2;x_2=0,5\)
Với y=-10/3
\(\Rightarrow x+\dfrac{1}{x}=-\dfrac{10}{3}\Rightarrow x_3=-\dfrac{1}{3};x_4=-3\)
Vậy: \(S=\left\{2;0,5;-\dfrac{1}{3};-3\right\}\)
Bài a tự giải
Bài b thì biến đổi xong rồi đặt ẩn phụ \(y=x+\dfrac{1}{x}\)
Bài c:
Đặt x-1=y
Phương trình trở thành: \(\left(y+2\right)^4+\left(y-2\right)^4=82\)
Rút gọn ta được: \(2y^4+48y^2-50=0\)
Đặt y2=z ( \(z\ge0\) )
Phương trình này cho z1=1, z2=-25(Loại)
\(z=1\Rightarrow y^2=1\Rightarrow y=\pm1\)
\(\Rightarrow x_1=2;x_2=0\)

a, \(x^4-6x^3+11x^2-6x+1=0\)
\(\Rightarrow\left(x^2-3x+1\right)^2=0\)
\(\Rightarrow x^2-3x+1=0\)
\(\Rightarrow x=\frac{\pm\sqrt{5}+3}{2}\)
Chúc bạn học tốt
\(x^4-\left(6x^2-2x^2\right)+\left(9x^2-6x+1\right)=0\)
\(x^4-2x^2\left(3x-1\right)+\left(3x-1\right)^2=0\)
\(\left(x^2-3x+1\right)^2=0\)
tự làm
B) \(\left(6x^4-18x^3\right)+\left(13x^{^3}-39x^2\right)+\left(x-3x\right)-\left(2x-6\right)=0\)
\(6x^3\left(x-3\right)+13x^2\left(x-3\right)+x\left(x-3\right)-2\left(x-3\right)=0\)
\(\left(x-3\right)\left(6x^3+13x^2-2\right)=0\)
\(\left(x-3\right)\left(6x^3+12x^2+x^2+2x-x-2\right)\)
\(\left(x-3\right)\left\{6x^2\left(x+2\right)+x\left(x+2\right)-\left(x+2\right)\right\}\)
\(\left(x-3\right)\left(x+2\right)\left(6x^2-x-1\right)\)
\(\left(x-3\right)\left(x+2\right)\left(6x^2-3x+2x-1\right)\)
\(\left(x-3\right)\left(x+2\right)\left(3x\left(2x-1\right)+\left(2x-1\right)\right)\)
\(\left(x-3\right)\left(x+2\right)\left(2x-1\right)\left(3x+1\right)=0\)
câu C nghĩ đã

a, \(x^4-6x^3+11x^2-6x+1=0\)
=> \(x^4-6x^3+9x^2+2x^2-6x+1=0\)
=> \(x^2+3x+1=0\)
=> \(\Delta\) =\(b^2-4c\)
=\(3^2.4=5\)
Nên \(\sqrt{\Delta}=5\)
x= \(\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-3+\sqrt{5}}{2}\)
hoặc x= \(\dfrac{b+\sqrt{\Delta}}{2a}=\dfrac{3+\sqrt{5}}{2}\)

\(b,\)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Rightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)
\(\Rightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)
\(\Rightarrow\left(x+9\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}\right)=\left(x+9\right)\left(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\right)\)
\(\Rightarrow\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}=\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\left(KTM\right)\)
\(\text{Giải}\)
\(b,\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)
\(\Leftrightarrow x+2009=0\Leftrightarrow x=-2009\)

1.
a) \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
b) \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
Bài 1:
a, \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
Vậy \(x=-4\) hoặc \(x=-1\)
b, \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x=3\) hoặc \(x=-2\)

chẳng ai giải, thôi mình giải vậy!
a) Đặt \(y=x^2+4x+8\),phương trình có dạng:
\(t^2+3x\cdot t+2x^2=0\)
\(\Leftrightarrow t^2+xt+2xt+2x^2=0\)
\(\Leftrightarrow t\left(t+x\right)+2x\left(t+x\right)=0\)
\(\Leftrightarrow\left(2x+t\right)\left(t+x\right)=0\)
\(\Leftrightarrow\left(2x+x^2+4x+8\right)\left(x^2+4x+8+x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)vậy tập nghiệm của phương trình là:S={-2;-4}
b) nhân 2 vế của phương trình với 12 ta được:
\(\left(6x+7\right)^2\left(6x+8\right)\left(6x+6\right)=72\)
Đặt y=6x+7, ta được:\(y^2\left(y+1\right)\left(y-1\right)=72\)
giải tiếp ra ta sẽ được S={-2/3;-5/3}
c) \(\left(x-2\right)^4+\left(x-6\right)^4=82\)
S={3;5}
d)s={1}
e) S={1;-2;-1/2}
f) phương trình vô nghiệm

Bạn đưa quá nhiều bài 1 lúc nên người ta giải được cũng chẳng ai muốn giải đâu, vì nhìn vào đã thấy ngộp rồi. Kinh nghiệm là muốn được giải quyết nhanh thì chỉ đăng 2-3 bài 1 lúc thôi
Bài 1:
a/ \(11-\left(2x+3\right)=3\left(x-4\right)\)
\(\Leftrightarrow11-2x-3=3x-12\)
\(\Leftrightarrow5x=20\)
\(\Rightarrow x=4\)
b/ \(5\left(2x-3\right)-4\left(5x-7\right)=19-2x\)
\(\Leftrightarrow10x-15-20x+28=19-2x\)
\(\Leftrightarrow8x=-6\)
\(\Rightarrow x=-\frac{3}{4}\)
c/
\(\frac{x}{3}-\frac{2x+1}{2}=\frac{x}{6}-x\)
\(\Leftrightarrow2x-3\left(2x+1\right)=x-6x\)
\(\Leftrightarrow x=3\)
d/
\(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)
\(\Leftrightarrow5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-150\)
\(\Leftrightarrow79x=158\)
\(\Rightarrow x=2\)
e/
\(\frac{2-6x}{5}-\frac{2+3x}{10}=7-\frac{6x+3}{4}\)
\(\Leftrightarrow4\left(2-6x\right)-2\left(2+3x\right)=140-5\left(6x+3\right)\)
\(\Leftrightarrow0=-121\) (vô lý)
Vậy pt vô nghiệm
f/
\(\frac{3x+2}{2}-\frac{3x+1}{6}=2x+\frac{5}{3}\)
\(\Leftrightarrow3\left(3x+2\right)-\left(3x+1\right)=12x+10\)
\(\Leftrightarrow6x=-5\)
\(\Rightarrow x=-\frac{5}{6}\)

\(a,\)\(x^4-4x^3+4x^2=0\)
\(\Leftrightarrow x^2.\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow x^2.\left(x^2-2.x.2+2^2\right)=0\)
\(\Leftrightarrow x^2.\left(x-2\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\\left(x-2\right)^2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(b,\)\(x^2+5x+4=0\)
\(\Leftrightarrow x^2+x+4x+4=0\)
\(\Leftrightarrow x.\left(x+1\right)+4.\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right).\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)
\(c,\)\(9x-6x^2-3=0\)
\(\Leftrightarrow-3.\left(2x^2-3x+1\right)=0\)
\(\Leftrightarrow2x^2-3x+1=0\)
\(\Leftrightarrow2x^2-2x-x+1=0\)
\(\Leftrightarrow2x.\left(x-1\right)-\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right).\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\2x=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)
\(d,\)\(2x^2+5x+2=0\)
\(\Leftrightarrow2x^2+4x+x+2=0\)
\(\Leftrightarrow2x.\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right).\left(2x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\2x+1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-2\\2x=-1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{2}\end{cases}}\)
b) 6x4 - 5x3 - 38x2 - 5x + 6 = 0
⇔ x2( 6x2 - 5x - 38 -\(\dfrac{5}{x}\) + \(\dfrac{6}{x^2}\) ) = 0
⇔ 6x2 - 5x - 38 - \(\dfrac{5}{x}\) + \(\dfrac{6}{x^2}\) = 0
⇔ 6( x2 + \(\dfrac{1}{x^2}\)) - 5( x + \(\dfrac{1}{x}\)) - 38 = 0
Đặt : x + \(\dfrac{1}{x}\) = y ⇒ x2 + \(\dfrac{1}{x^2}\) = y2 - 2
Ta có : 6( y2 - 2) - 5y - 38 = 0
⇔ 6y2 - 12 - 5y - 38 = 0
⇔ 6y2 - 5y - 50 = 0
⇔ 6y2 + 15y - 20y - 50 = 0
⇔ 2y( 3y - 10 ) + 5( 3y - 10 ) = 0
⇔ ( 3y - 10 )( 2y + 5) = 0
⇔ y = \(\dfrac{10}{3}\) hoặc : y = \(\dfrac{-5}{2}\)
*) Với : y = \(\dfrac{10}{3}\) , ta có :
x + \(\dfrac{1}{x}\) = \(\dfrac{10}{3}\)
⇔ \(\dfrac{x^2+1}{x}\) = \(\dfrac{10}{3}\) ( x # 0)
⇔ 3x2 - x - 9x + 3 = 0
⇔ x( 3x - 1) - 3( 3x - 1) = 0
⇔ ( 3x - 1)( x - 3) = 0
⇔ x = \(\dfrac{1}{3}\) ( TM ) hoặc : x = 3 ( TM)
*) Với : y = \(\dfrac{-5}{2}\) , ta có :
x + \(\dfrac{1}{x}\) = \(\dfrac{-5}{2}\)
⇔ \(\dfrac{x^2+1}{x}\) = \(\dfrac{-5}{2}\) ( x # 0)
⇔ 2x2 + 2 + 5x = 0
⇔ 2x2 + x + 4x + 2 = 0
⇔ x( 2x + 1) + 2( 2x + 1) = 0
⇔ x = - 2 hoặc : x = \(\dfrac{-1}{2}\)
a/ \(x^4+2x^3-4x^2-5x-6=0\)
\(\Leftrightarrow x^4+x^3+x^2-2x^3-2x^2-2x+3x^3+3x^2+3x-6x^2-6x-6=0\)
\(\Leftrightarrow x^2\left(x^2+x+1\right)-2x\left(x^2+x+1\right)+3x\left(x^2+x+1\right)-6\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2-2x+3x-6\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x-2\right)\left(x+3\right)=0\)
Vì \(x^2+x+1>0\forall x\Rightarrow\) vô nghiệm
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Vậy pt có 2 nghiệm....
b/ \(6x^4-5x^3-38x^2-5x+6=0\)
\(\Leftrightarrow6x^4+3x^3-2x^3-18x^3-9x^2+6x^2+3x-12x^3-6x^2+4x^2+2x+36x^2+18x-12-6=0\)
\(\Leftrightarrow3x^3\left(2x+1\right)-x^2\left(2x+1\right)-9x^2\left(2x+1\right)+3x\left(2x+1\right)-6x^2\left(2x+1\right)+2x\left(2x+1\right)+18x\left(2x+1\right)-6\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(3x^3-x^2-9x^2+3x-6x^2+2x+18x-6\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left[x^2\left(3x-1\right)-3x\left(3x-1\right)-2x\left(3x-1\right)+6\left(3x-1\right)\right]=0\)
\(\Leftrightarrow\left(2x+1\right)\left(3x-1\right)\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(3x-1\right)\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\3x-1=0\\x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{1}{3}\\x=2\\x=3\end{matrix}\right.\)