K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2019

\(b,\)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)

\(\Rightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)

\(\Rightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)

\(\Rightarrow\left(x+9\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}\right)=\left(x+9\right)\left(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\right)\)

\(\Rightarrow\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}=\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\left(KTM\right)\)

30 tháng 1 2019

\(\text{Giải}\)

\(b,\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)

\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)

\(\Leftrightarrow x+2009=0\Leftrightarrow x=-2009\)

31 tháng 5 2017

câu 2 :

 \(\Leftrightarrow\)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}-\frac{x+4}{2005}-\frac{x+5}{2004}-\frac{x+6}{2003}\)=0

\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x-2009}{2003}\)=0

\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\)

\(\Rightarrow x+2009=0\)

\(\Rightarrow x=-2009\)

12 tháng 7 2017

c) Ta có : \(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)

\(\Rightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\)\(\left(\frac{x+6}{2003}+1\right)\)

\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)

\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)

\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)

Mà : \(\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\ne0\)

Nên x + 2009 = 0 => x = -2009

8 tháng 2 2017

b)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)

<=>\(\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)

<=>\(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)<=>\(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)\( \left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)

\(\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\ne0\)

nên phương trình đó xảy ra khi và chỉ khi x+2009=0

<=>x=-2009

Vậy phương trình có no là x=-2009

8 tháng 2 2017

b) \(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)

\(\Leftrightarrow\)\(\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)\)=

\(\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)

\(\Leftrightarrow\) \(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\)\(\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)

\(\Leftrightarrow\) \(\left(x+2009\right)\)\(\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\)= 0

\(\Leftrightarrow\)\(x+2009=0\)

( vì \(\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\) \(\ne0\))

\(\Leftrightarrow\) \(x=-2009\)

Vậy x = -2009

16 tháng 11 2015

dễ mà bn,cộng 1 vào mỗi biểu thức và trừ vế 2 là xong

13 tháng 11 2020

\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)

\(\Leftrightarrow\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}+3=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}+3\)

\(\Leftrightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)\)

      \(+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)

\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)

\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)

\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)(1)

Vì \(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\ne0\)(2)

Từ (1) và (2) \(\Rightarrow x+2009=0\)\(\Rightarrow x=-2009\)

Vậy \(x=-2009\)

13 tháng 11 2015

tick cho mình rồi mình làm cho

a) Ta có: \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)

\(\Leftrightarrow\frac{7x}{8}-5x+45-\frac{20x+1,5}{6}=0\)

\(\Leftrightarrow\frac{21x}{24}-\frac{120x}{24}+\frac{1080}{24}-\frac{4\left(20x+1,5\right)}{24}=0\)

\(\Leftrightarrow-99x+1080-4\left(20x+1,5\right)=0\)

\(\Leftrightarrow-99x+1080-80x-6=0\)

\(\Leftrightarrow1074-179x=0\)

\(\Leftrightarrow179x=1074\)

hay x=6

Vậy: x=6

b) Ta có: \(4\left(0,5-1,5x\right)=-\frac{5x-6}{3}\)

\(\Leftrightarrow2-6x=\frac{6-5x}{3}\)

\(\Leftrightarrow\frac{3\left(2-6x\right)}{3}-\frac{6-5x}{3}=0\)

\(\Leftrightarrow6-18x-6+5x=0\)

\(\Leftrightarrow-13x=0\)

mà -13≠0

nên x=0

Vậy: x=0

c) Ta có: \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)

\(\Leftrightarrow\frac{6\left(x+4\right)}{30}+\frac{30\left(-x+4\right)}{30}-\frac{10x}{30}+\frac{15\left(x-2\right)}{30}=0\)

\(\Leftrightarrow6\left(x+4\right)+30\left(4-x\right)-10x+15\left(x-2\right)=0\)

\(\Leftrightarrow6x+24+120-30x-10x+15x-30=0\)

\(\Leftrightarrow-19x+114=0\)

\(\Leftrightarrow-19x=-114\)

hay x=6

Vậy: x=6

d) Ta có: \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)

\(\Leftrightarrow\frac{21\left(4x+3\right)}{105}-\frac{15\left(6x-2\right)}{105}-\frac{35\left(5x+4\right)}{105}-\frac{315}{105}=0\)

\(\Leftrightarrow84x+63-90x+30-175x-140-315=0\)

\(\Leftrightarrow-181x-362=0\)

\(\Leftrightarrow-181x=362\)

hay x=-2

Vậy: x=-2

e) Ta có: \(\frac{1}{4}\left(x+3\right)=3-\frac{1}{2}\left(x+1\right)-\frac{1}{3}\left(x+2\right)\)

\(\Leftrightarrow\frac{x+3}{4}=3-\frac{x+1}{2}-\frac{x+2}{3}\)

\(\Leftrightarrow\frac{3\left(x+3\right)}{12}-\frac{36}{12}+\frac{6\left(x+1\right)}{12}+\frac{4\left(x+2\right)}{12}=0\)

\(\Leftrightarrow3x+9-36+6x+6+4x+8=0\)

\(\Leftrightarrow13x-13=0\)

\(\Leftrightarrow13x=13\)

hay x=1

Vậy: x=1

30 tháng 3 2016

Câu  \(1.\)  Giải phương trình

\(a.\)  \(\left(x^2+x\right)^2+4\left(x^2+x\right)=12\)   \(\left(1\right)\)

Đặt  \(y=x^2+x\)  \(\left(2\right)\)  thì khi đó, phương trình  \(\left(1\right)\)  sẽ có dạng:

\(y^2+4y=12\)

\(\Leftrightarrow\)   \(y^2+4y-12=0\)

\(\Leftrightarrow\)   \(y^2+4y+4-16=0\)

\(\Leftrightarrow\)   \(\left(y+2\right)^2-4^2=0\)

\(\Leftrightarrow\)   \(\left(y-2\right)\left(y+6\right)=0\)

\(\Leftrightarrow\)   \(^{y-2=0}_{y+6=0}\)  \(\Leftrightarrow\)  \(^{y=2}_{y=-6}\)      

Đến bước này, ta cần xét hai trường hợp sau:

\(\text{*)}\)  \(TH_1:\)  Với  \(y=2\)  thì phương trình  \(\left(2\right)\)  trở thành:

\(x^2+x=2\)

\(\Leftrightarrow\)  \(x^2+x-2=0\)

\(\Leftrightarrow\)  \(\left(x^2-1\right)+x-1=0\)

\(\Leftrightarrow\)  \(\left(x-1\right)\left(x+1\right)+\left(x-1\right)=0\)

\(\Leftrightarrow\)  \(\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\)   \(^{x-1=0}_{x+2=0}\)  \(\Leftrightarrow\)  \(^{x=1}_{x=-2}\)  (dùng dấu ngoặc nhọn nhé bạn!)  

\(\text{*)}\)  \(TH_2:\)  Với  \(y=-6\)  thì phương trình  \(\left(2\right)\)  trở thành:

\(x^2+x=-6\)

\(\Leftrightarrow\)  \(x^2+x+6=0\)

\(\Leftrightarrow\)  \(x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{23}{4}=0\)

\(\Leftrightarrow\)  \(\left(x+\frac{1}{2}\right)^2+\frac{23}{4}=0\)  \(\left(3\right)\)

Vì  \(\left(x+\frac{1}{2}\right)^2\ge0\)  với mọi  \(x\)  \(\Rightarrow\)  \(\left(x+\frac{1}{2}\right)^2+\frac{23}{4}\ge\frac{23}{4}>0\)

Do đó, phương trình  \(\left(3\right)\)  vô nghiệm!

Vậy,  tập nghiệm của phương trình  \(\left(1\right)\)  là  \(S=\left\{-1;2\right\}\)

30 tháng 3 2016

Câu  \(1.\)  Giải phương trình!

\(b.\) 

 \(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)  

\(\Leftrightarrow\)  \(\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)

\(\Leftrightarrow\)   \(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)

\(\Leftrightarrow\)    \(\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)   \(\left(4\right)\)

Do  \(\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\ne0\)  nên từ  \(\left(4\right)\)  suy ra  

\(x+2009=0\)  \(\Leftrightarrow\)  \(x=-2009\)

Vậy,  \(S=\left\{-2009\right\}\)

tớ ko bt lm abc , tớ lm d thôi nha , thứ lỗi 

\(\frac{5}{2x-3}-\frac{1}{x+2}=\frac{5}{x-6}-\frac{7}{2x-1}\)

\(\frac{3x+13}{2x^2+x-6}=\frac{5}{x-6}+\frac{7}{1-2x}\)

\(\frac{3x+13}{\left(x+2\right)\left(2x-3\right)}=\frac{3x+37}{\left(x-6\right)\left(2x-1\right)}\)

\(\frac{10-9x}{-4x^3+32x^2-51x+18}=0\)

\(\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{10}{9}\end{cases}}\)