K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2023

A = -(x - y - z) + (-z + y + x) - (x + y)

= -x + y + z - z + y + x - x - y

= (-x + x - x) + (y + y - y) + (z - z)

= -x + y

B = -(-a + b + c) + (b + c - 1)

= a - b - c + b + c - 1

= a + (-b + b) + (-c + c) - 1

= a - 1

11 tháng 10 2023

A= -(x-y-z) + (- z + y + x) - (x + y) 

 A= -x + y - z - z + y + x - x- y

A= (-x + x - x) + (y - y + y) + (-z - z) 

A= (-x) + y - 2z

 

B= -(- a + b + c) + (b+c-1) 

B= a - b - c + b + c -1

B= a + (-b + b) + (-c + c) - 1

B= a -1. 

 

22 tháng 5 2017

A = a. (b - c - d) - a . (b + c - d)

= ab - ac - ad - ab - ac + ad

= 0

B = x . (z -y) -z . (x+ y) + y . (x - y)

= xz -xy -zx -zy - yx -yy

= -xy -xy - zy - yy

= -y (x - x - z - y)

= -y (-z - y )

10 tháng 2 2017

a) \(\left(x-y\right)-\left(x-z\right)=\left(z+x\right)-\left(y+x\right)\)

BL:

Ta có: \(\left(x-y\right)-\left(x-z\right)\)

\(=x-y-x+z\)

\(=z+x-y-x\)

\(=\left(z+x\right)-\left(y+x\right)\)

\(\Rightarrow\) \(\left(x-y\right)-\left(x-z\right)=\left(z+x\right)-\left(y+x\right)\)

b) \(\left(x-y+z\right)-\left(y+z-x\right)-\left(x-y\right)=\left(z-y\right)-\left(z-x\right)\)

BL:

Lại có: \(\left(x-y+z\right)-\left(y+z-x\right)-\left(x-y\right)\)

\(=x-y+z-y-z+x-x+y\)

\(=\left(x-y-x+y\right)+\left(z-y\right)-\left(z-x\right)\)

\(=\left(z-y\right)-\left(z-x\right)\)

\(\Rightarrow\) \(\left(x-y+z\right)-\left(y+z-x\right)-\left(x-y\right)=\left(z-y\right)-\left(z-x\right)\)

c) \(a\left(b+c\right)-b\left(a-c\right)=\left(a+b\right)c\) BL: Ta lại có: \(a\left(b+c\right)-b\left(a-c\right)=\left(a+b\right)c\) \(=ab+ac-ba+bc\) \(=\left(ab-ba\right)+\left(ac+bc\right)\) \(=0+\left(a+b\right)c\) \(=\left(a+b\right)c\) \(\Rightarrow\) \(a\left(b+c\right)-b\left(a-c\right)=\left(a+b\right)c\) \(\rightarrow\) đpcm.
AH
Akai Haruma
Giáo viên
6 tháng 7

a. Biểu thức không viết được thành tích. Bạn xem lại.

b. $(x-y)a+(x+y)b+(y+z)a+(z-y)b$

$=a(x-y+y+z)+b(x+y+z-y)$

$=a(x+z)+b(x+z)=(x+z)(a+b)$

c. $(x-y)a+(x+y)b+(y+z)a+(z-y)b$

$=a(x-y+y+z)+b(x+y+z-y)=a(x+z)+b(x+z)=(x+z)(a+b)$

d. $(x+y+z)a+(-x-y-z)a+a(x+y)+az$

$=(x+y+z)a-(x+y+z)a+a(x+y+z)=a(x+y+z)$

4 tháng 2 2016

1) 

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+C+a}=1\)

=> a=b ; b=c => a=b=c 

=> đpcm

2) 

\(\frac{x}{3}=\frac{y}{6}=\frac{z}{10}=\frac{x+z}{3+10}=\frac{7+y}{13}\)

=> 13y = 6.(7+y)

=> 13y = 42+6y

=> 7y = 42

=> y=6

=> x/3 = z/10 = 1

=> x=3 ; y=10

4 tháng 2 2016

x=3

y=10

ủng hộ mk nha

21 tháng 4 2019

giúp mk với đúng mk sẽ k cho nhé

21 tháng 4 2019

1) Ta có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

Suy ra a=b=c(đpcm)

9 tháng 2 2018

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

Do đó :

\(\frac{a}{b}=1\Rightarrow a=b\)\(\left(1\right)\)

\(\frac{b}{c}=1\Rightarrow b=c\)\(\left(2\right)\)

\(\frac{c}{a}=1\Rightarrow c=a\)\(\left(3\right)\)

Từ \(\left(1\right),\left(2\right)\)và \(\left(3\right)\)suy ra \(a=b=c\left(dpcm\right)\)

Vậy \(a=b=c\)

9 tháng 2 2018

1) a/b = b/c= c/a = a+b+c / a+b+ c = 1 (tính chất dãy tỉ số bằng nhau) 

=> đpcm

2) Áp dụng tính chất dãy tỉ số bằng nhau có:

\(\frac{x}{3}=\frac{y}{6}=\frac{z}{10}=\frac{x+z-y}{3+10-6}=\frac{7}{7}=1\)

\(\frac{x}{3}=1;x=3.1=3\);\(\frac{y}{6}=1;y=6.1=6\);\(\frac{z}{10}=1;z=10.1=10\)