Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=1+22+24+...+2100
4S=22B=22+24+26+...+2102
3B=4B-B=2102-1
=> B = \(\frac{2^{102}-1}{3}\)
S = \(2+2^2+2^3+...+2^{100}\)
2S = \(2^2+2^3+...+2^{101}\)
2S - S = \(2^{101}-1\)
S = \(2^{101}-1\)
Vì \(101\) chia \(4\) dư \(1\) có dạng \(4k+1\) nên \(2^{101}\)có tận cùng là \(2\) . Mà S = \(2^{101}-1\)nên S có tận cùng là \(1\)
S = \(2+2^2+2^3+...+2^{100}\)
S = \(\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)
S = \(2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
S = \(3.5.\left(2+2^5+...+2^{97}\right)\)chia hết cho \(3\) và\(5\)
\(S=2+2^2+2^3+2^4+....+2^{99}+2^{100}\)
\(S=2.\left(2+2^2\right)+.....+2^{99}.\left(2+2^2\right)\)
\(S=2.6+.....+2^{99}.6\)
\(S=6.\left(2+2^{99}\right)⋮6\)
\(\Rightarrow S⋮6\)
a ) S = 20 +22 + 24 +...+ 22014
4S = 22 + 24 + 26 + ... + 22016
Mà S = ( 4S- S ) : 3
=> S = [ ( 22 + 24 + 26 +...+ 22016 ) - ( 20 + 22 + 24 +...+ 22014 ) ] : 3
= [ 22016 - 20 ] : 3
= \(\frac{2^{2016}-1}{3}\)
b) S = 20 + 22 + 24 + ... + 22014
= ( 20 + 22 + 24 ) + ( 25 + 26 + 27 ) + ...+ ( 22010 + 22012 + 22014 )
= 21 + 25 x ( 20 + 22 + 24 ) +... + 22010 x ( 20 + 22 + 24 )
= 21 + 25 x 21 + ... + 22010 x 21
= 21 x ( 1 + 25 + ... + 22010 )
=> S \(⋮\)21 (đpcm)
\(S=2+2^2+2^3+....+2^{100}\)
\(\Rightarrow2S=2^2+2^3+....+2^{101}\)
\(\Rightarrow S=2^{101}-2\)
a) \(S=1+3^2+3^4+3^6+...+3^{2002}\)
\(3^2.S=3^2+3^4+3^6+3^8+...+3^{2004}\)
\(9S-S=\left(3^2+3^4+3^6+3^8+...+3^{2004}\right)-\left(1+3^2+3^4+3^6+...+3^{2002}\right)\)
\(8S=3^{2004}-1\)
\(S=\frac{3^{2004}-1}{8}\)
b) \(S=1+3^2+3^4+3^6+...+3^{2002}\)
\(=\left(1+3^2+3^4\right)+3^6\left(1+3^2+3^4\right)+...+2^{1998}\left(1+3^2+3^4\right)\)
\(=\left(1+3^2+3^4\right)\left(1+3^6+...+3^{1998}\right)\)
\(=91\left(1+3^6+...+3^{1998}\right)\)
\(=7.13\left(1+3^6+...+3^{1998}\right)\)
Vậy S chia hết cho 7
a. S = 2 + 22 + 23 + 24 + ... + 21999 + 22000
= (2 + 22) + (22 . 2 + 22 . 22) + ... + (21998 . 2 + 21998 . 22)
= (2 + 4) + 22.(2 + 22) + ... + 21998.(2 + 22)
= 6 + 22.6 + ... + 21998.6
= 6.(1 + 22 + ... + 21998) chia hết cho 6
=> S chia hết cho 6.
b. S = 2 + 22 + 23 + ... + 22000
=> 2S = 2.(2 + 22 + 23 + ... + 22000)
=> 2S = 22 + 23 + 24 + ... + 22001
=> 2S - S = (22 + 23 + 24 + ... + 22001) - (2 + 22 + 23 + ... + 22000)
=> S = 22001 - 2
a) S = 2 + 22+23+.....+22000
S = (2 +22) + (2 . 22+22+22) + .....+ ( 2 . 21998 +22.21998)
S = 6 .1 + 22.(2+22) + ..... + 21998.(2 + 22)
S = 6 . ( 1 + 22 + ....+ 21998)
b)
2S = 22+23+24+ .... + 22001
2S - S = (22+23+24+ .... + 22001) - ( 2 + 22+23+.....+22000)
2S = 22001-2
S = \(\frac{2^{2001}-1}{2}\)
a ) \(S=2+2^2+2^3+2^4+...+2^{1999}+2^{2000}\)
\(=\left(2+2^2\right)+\left(2^2.2+2^2.2^2\right)+...+\left(2^{1998}.2+2^{1998}.2^2\right)\)
\(=\left(2+4\right)+2^2.\left(2+2^2\right)+..+2^{1998}.\left(2+2^2\right)\)
\(=6+2^6.6+...+2^{1998}.6\)
\(=6.\left(1+2^2+...2^{1998}\right)⋮6\)
\(\Rightarrow S⋮6\)
b ) \(S=2+2^2+2^3+...+2^{2000}\)
\(\Rightarrow2S=2.\left(2+2^2+2^3+...+2^{2000}\right)\)
\(\Rightarrow2S=2^2+2^3+2^4+...+2^{2001}\)
\(\Rightarrow2S-S=\left(2^2+2^3+2^4+...+2^{2001}\right)-\left(2+2^2+2^3+...+2^{2000}\right)\)
\(\Rightarrow S=2^{2001}-2\)
Ta có:
\(2^2S=2^2\left(2^2+2^4+....+2^{100}\right)\)
\(\Rightarrow4S=2^4+2^6+....+2^{102}\)
\(\Rightarrow4S-S=\left(2^4+2^6+....+2^{102}\right)-\left(2^2+2^4+....+2^{100}\right)\)
\(\Rightarrow3S=2^{100}-2^2=2^{100}-4\)
\(\Rightarrow S=\frac{2^{100}-4}{3}\)