Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2^100=(2^10)^10=1024^10
Ta thấy 1000<1024<1100
Mà 1000^10 =10^30 có 30 chữ số
1100^10 =(11^10).(100^10)=11^10.(10^20)
Mà 11^10 có 11 chữ số. 10^20 có 20 chữ số. tổng cộng 1100^10 có 31 chữ số.
Suy ra:
2^100 có 30 chữ số.
a) Ta có:
\(\frac{9}{x}=\frac{y}{5}\Rightarrow xy=45\)
Mà \(45=5.9=9.5=\left(-5\right)\left(-9\right)=\left(-9\right)\left(-5\right)\)
Vậy x=1;y=2 hoặc x=2;y=1 hoặc x=-1;y=-2 hoặc x=-2;y=-1
b) Ta có: \(\frac{n+1}{n-1}=\frac{\left(n-1\right)+2}{n-1}=1+\frac{2}{n-1}\left(n\ne1\right)\)
Để A nguyên \(\Leftrightarrow\frac{2}{n-1}\) nguyên
\(\Leftrightarrow n-1\inƯ\left(2\right)=\left\{-1;-2;0;1;2\right\}\)
\(\Rightarrow n\in\left\{-1;0;2;3\right\}\)
c) Gọi abcd là số cần tìm
Ta có: a: 6 cách
b: 5 cách
c: 4 cách
d: 3 cách
==> có> 6.5.4.3=360 số có 4 chữ số khác nhau được lập nên từ các chữ số đã cho
a, Ta có: x.(x-7).(3x+5)=0 với x thuộc N
=>x=0 hoặc x-7=0 hoặc 3x+5=0
*Nếu x-7=0 => x=0+7 => x=7 thuộc N
*Nếu 3x+5=0 => 3x=0-5 => 3x=-5 => x=-5:3 => x=5/3 ko thuộc N
=> x=0 hoặc x=7
Vậy A={0;7}
Ta có: 2/-3<x/5<-1/6 với x thuộc Z
=> -20/30<6x/30<5/50
=> -20<6x<5
=> 6x thuộc {-19; -18; -17;...;2;3;4}
Vì x thuộc Z
=> x thuộc {-3;-2;-1;0}
Vậy B={-3;-2;-1;0}
b,Vì A có 2 phần tử
B có 4 phần tử
=> A có ít phần tử hơn B
Vậy A có ít phần tử hơn B.
a^2 + b^2 + c^2 + d^2 = e^2
a^2 + b^2 + c^2 + e^2 = d^2
a^2 + b^2 + d^2 + e^2 = c^2
a^2 + d^2 + e^2 + c^2 = b^2
d^2 + e^2 + c^2 + b^2 = a^2
=> 4( a^2 + b^2 + c^2 + d^2 + e^2 ) = a^2 + b^2 + c^2 + d^2 + e^2
=> 3( a^2 + b^2 + c^2 + d^2 + e^2 ) = 0
=> a^2 + b^2 + c^2 + d^2 + e^2 = 0
=> a = b = c = d = e = 0
a+b=c+d => a=c+d-b
thay vào ab+1=cd
=> (c+d-b)*b+1=cd
<=> cb+db-cd+1-b^2=0
<=> b(c-b)-d(c-b)+1=0
<=> (b-d)(c-b)=-1
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên
mà (b-d)(c-b)=-1 nên có 2 TH:
TH1: b-d=-1 và c-b=1
<=> d=b+1 và c=b+1
=> c=d
TH2: b-d=1 và c-b=-1
<=> d=b-1 và c=b-1
=> c=d
Vậy từ 2 TH ta có c=d.
a, \(A=\frac{n+7}{n+2}=\frac{n+2+5}{n+2}=\frac{5}{n+2}\)
\(\Rightarrow n+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta lập bảng
n + 2 | 1 | -1 | 5 | -5 |
n | -1 | -3 | 3 | -7 |
b, \(B=\frac{n+5}{n-2}=\frac{n-2+7}{n-2}=\frac{7}{n-2}\)
\(\Rightarrow n-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta lập bảng
n - 2 | 1 | -1 | 7 | -7 |
n | 3 | 1 | 9 | -5 |
c, \(C=\frac{2n+13}{n+1}=\frac{2\left(n+1\right)+11}{n+1}=\frac{11}{n+1}\)
\(\Rightarrow n+1\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Ta lập bảng
n + 1 | 1 | -1 | 11 | -11 |
n | 0 | -2 | 10 | -12 |
d) Để D là số nguyên <=> \(\frac{3n+7}{2n+3}\)là số nguyên
<=> \(3n+7⋮2n+3\)
<=> 2(3n + 7) \(⋮\) 2n + 3
<=> 6n + 14 \(⋮\)2n + 3
<=> 3(2n + 3) + 5 \(⋮\)2n + 3
<=> 5 \(⋮\)2n + 3 (vì 3(2n + 3) \(⋮\)2n + 3)
<=> 2n + 3 \(\in\)Ư(5) = {1; -1; 5; -5}
Lập bảng:
2n + 3 | 1 | -1 | 5 | -5 |
n | -1 | -2 | 1 | -4 |
Vậy ....