Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đáp án C.
Giả sử bác An gửi số tiền tối thiểu hàng tháng là T (đồng). Đặt r = 0,45%.
Hết tháng thứ nhất bác An nhận được số tiền cả gốc và lãi là
T 1 = T + T . r = T . 1 + r .
Hết tháng thứ hai bác An nhận được số tiền cả gốc và lãi là
T 2 = T . 2 + r + T . 2 + r . r = T . r + 1 2 + r + 1 .
Bằng phương pháp quy nạp toán học, ta chứng minh được rằng sau n tháng gửi tiết kiệm thì bác An nhận được số tiền cả gốc và lãi là
T n = T 1 + r n + 1 + r n − 1 + ... + 1 + r .
Dễ dàng tính được T n = T r . 1 + r . 1 + r n − 1 .
Suy ra số tiền lãi sau n tháng gửi tiết kiệm là
L n = T n − T n = T r . 1 + r . 1 + r n − 1 − T n .
Theo giả thiết, ta có n = 36 , L 36 ≥ 30 000 000. Suy ra T ≥ 9 493 000.
Phân tích phương án nhiễu.
Phương án A: Sai do HS tính chỉ gửi 35 tháng.
Phương án B: Sai do HS sử dụng công thức của bài toán tính lãi kép và hiểu đề bài yêu cầu số tiền thu được sau 3 năm đủ để mua xe máy có trị giá 30 triệu đồng nên tìm được T = 25 523 000.
Phương án C: Sai do HS giải đúng như trên nhưng lại làm tròn T = 9 492 000.

Chọn B.
Khi anh T gửi ngân hàng A:
*Trong 12 tháng đầu tiên số tiền anh T có là
T12 = a(1 + r)n = 180.(1 + 0,012) 12 = 207,7 triệu đồng
*Trong 6 tháng còn lại số tiền anh T có cả gốc lẫn lãi là
TA = 207,7( 1 + 0,01) 6 = 220,5 triệu đồng
Khi anh T gửi ngân hàng B:
*Cuối tháng thứ 18, anh T có số tiền cả gốc lẫn lãi là
*Với m = 0,8%; n = 18; a = 10 triệu đồng.
Suy ra triệu đồng
Do đó TA - TB = 26,2 triệu đồng.

Chọn A.
Ta có: T = A(1 + r) n trong đó n là số kỳ hạn, r là lãi suất theo kỳ hạn
TH1: r = 1%/tháng và n = 12 khi đó T1 = A(1 + 0,01)12
TH2: r = 3%/tháng và n = 4 khi đó T2 = A(1 + 0,03)4
TH3: r = 6%/tháng và n = 2 khi đó T3 = A(1 + 0,06)2
TH4: r = 12%/tháng và n = 1 khi đó T4 = A(1 + 0,12)
Từ 4 kết quả trên bạn A nên chọn phương án gửi theo kỳ hạn 1 tháng để có số tiền là lớn nhất.
Chọn A.
Ta có: T = A(1+ r)n
- 12 tháng đầu: lãi suất 1%/ tháng suy ra r1= 3%/quý và n = 4
Do đó sau 12 tháng đầu tiên số tiền cả gốc lẫn lãi là:T1 = 2( 1 + 3%) 4
- 18 tháng tiếp theo: lãi suất 1,1%/tháng suy ra r2= 3,3%/ quý và
Do đó sau 18 tháng tiếp theo số tiền cả gốc lẫn lãi là:T2 = T1( 1 + 3,3%)6
- 6 tháng cuối cùng: lãi suất 1,2%/ tháng suy rar3= 3,6%/ quý và n = 2
Số tiền cả gốc lẫn lãi thu được là T3= T2( 1+ 3,6%) 2 = 2,9356.