Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số vốn tích luỹ của bác An sau 6 tháng gửi tiền với lãi suất 0,7%/ tháng là:
T1= 5.( 1,007) 6 triệu đồng;
Số vốn tích luỹ của bác An sau 9 tháng gửi tiền ( 3 tháng tiếp theo với lãi suất 0,9%/ tháng) là:
T2= T1. (1,009) 3= 5.(1,007) 6.( 1,009) 3 triệu đồng;
Do đó số tiền bác An lãnh được sau 1 năm (12 tháng) từ ngân hàng ( 3 tháng tiếp theo sau đó với lãi suất 0,6%/ tháng) là:
T= T2. (1,006) 3 ≈ 5452733,453 triệu đồng
Chọn C
Chọn C
Gọi P là số tiền ông A gửi lúc đầu. Để rút được 100 triệu đồng sau 5 năm ta phải có
P ( 1 + 0 , 068 ) 5 = 100000000
Vì số tiền gửi là tròn triệu đồng nên ông A phải gửi tối thiểu 72 triệu đồng.
Chọn C
Gọi P là số tiền ông A gửi lúc đầu. Để rút được 100 triệu đồng sau 5 năm ta phải có
P ( 1 + 0 , 068 ) 5 = 100000000
Vì số tiền gửi là tròn triệu đồng nên ông A phải gửi tối thiểu 72 triệu đồng.
Chọn A.
Ta có: T = A(1+ r)n
- 12 tháng đầu: lãi suất 1%/ tháng suy ra r1= 3%/quý và n = 4
Do đó sau 12 tháng đầu tiên số tiền cả gốc lẫn lãi là:T1 = 2( 1 + 3%) 4
- 18 tháng tiếp theo: lãi suất 1,1%/tháng suy ra r2= 3,3%/ quý và
Do đó sau 18 tháng tiếp theo số tiền cả gốc lẫn lãi là:T2 = T1( 1 + 3,3%)6
- 6 tháng cuối cùng: lãi suất 1,2%/ tháng suy rar3= 3,6%/ quý và n = 2
Số tiền cả gốc lẫn lãi thu được là T3= T2( 1+ 3,6%) 2 = 2,9356.
Đáp án C.
Giả sử bác An gửi số tiền tối thiểu hàng tháng là T (đồng). Đặt r = 0,45%.
Hết tháng thứ nhất bác An nhận được số tiền cả gốc và lãi là
T 1 = T + T . r = T . 1 + r .
Hết tháng thứ hai bác An nhận được số tiền cả gốc và lãi là
T 2 = T . 2 + r + T . 2 + r . r = T . r + 1 2 + r + 1 .
Bằng phương pháp quy nạp toán học, ta chứng minh được rằng sau n tháng gửi tiết kiệm thì bác An nhận được số tiền cả gốc và lãi là
T n = T 1 + r n + 1 + r n − 1 + ... + 1 + r .
Dễ dàng tính được T n = T r . 1 + r . 1 + r n − 1 .
Suy ra số tiền lãi sau n tháng gửi tiết kiệm là
L n = T n − T n = T r . 1 + r . 1 + r n − 1 − T n .
Theo giả thiết, ta có n = 36 , L 36 ≥ 30 000 000. Suy ra T ≥ 9 493 000.
Phân tích phương án nhiễu.
Phương án A: Sai do HS tính chỉ gửi 35 tháng.
Phương án B: Sai do HS sử dụng công thức của bài toán tính lãi kép và hiểu đề bài yêu cầu số tiền thu được sau 3 năm đủ để mua xe máy có trị giá 30 triệu đồng nên tìm được T = 25 523 000.
Phương án C: Sai do HS giải đúng như trên nhưng lại làm tròn T = 9 492 000.