Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Từ\) \(giả\) \(thiết\) : \(4a^2+b^2=\text{5}ab\)
\(\Leftrightarrow4a^2-4ab-ab+b^2\)
\(\Leftrightarrow\left(4a-b\right)\left(a-b\right)=0\)
\(TH1:\) \(4a-b=0\) \((\) \(mẫu\) \(thuẫn\) \(với\) \(2a>b\) \()\)
\(TH2:\) \(a-b=0\)
\(\Rightarrow a=b\)
\(\Rightarrow A=\dfrac{a^2}{4a^2-a^2}\)
\(\Rightarrow A=\dfrac{1}{3}\)
\(a,ĐK:x\ne\pm2\\ b,A=\dfrac{5x+10+14x-28-20}{2\left(x-2\right)\left(x+2\right)}=\dfrac{19\left(x-2\right)}{2\left(x-2\right)\left(x+2\right)}=\dfrac{19}{2\left(x+2\right)}\\ c,x=-\dfrac{1}{2}\Leftrightarrow A=\dfrac{19}{2\left(2-\dfrac{1}{2}\right)}=\dfrac{19}{2\cdot\dfrac{3}{2}}=\dfrac{19}{3}\)
a) \(ĐK:a\ne1;a\ne0\)
\(A=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}=\left[\frac{a^2-2a+1}{a^2+a+1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}\)\(=\left[\frac{a^3-3a^2+3a-1}{a^3-1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}=\frac{a^3-1}{a^3-1}.\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)
b) Ta có: \(a^2+4\ge4a\)(*)
Thật vậy: (*)\(\Leftrightarrow\left(a-2\right)^2\ge0\)
Khi đó \(\frac{4a}{a^2+4}\le1\)
Vậy MaxA = 1 khi x = 2
\(P=\frac{a^4+a^2+1}{a^2}\)
\(=a^2-4a+1=\left(a-2\right)^2-3=\left(a-3\right)^2-\left(\sqrt{3}\right)^2=0\)
Áp dụng Hằng Đẳng Thức, ta có: \(a^2-b^2=0\)
hình như là sai bạn