\(\left(x-1\right)\left(x-3\right)\le\frac{18}{x^2-4x-4}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2020

\(\left(x-1\right)\left(x-3\right)\le\frac{18}{x^2-4x-4}\) ( ĐK : \(\left\{{}\begin{matrix}x\ne2+2\sqrt{2}\\x\ne2-2\sqrt{2}\end{matrix}\right.\) )

\(\Leftrightarrow x^2-4x+3\le\frac{18}{x^2-4x-4}\)

Đặt \(x^2-4x+3=a\)

\(\Leftrightarrow a\le\frac{18}{a-7}\)

\(\Leftrightarrow\frac{a^2-7a-18}{a-7}\le0\)

\(\Leftrightarrow\frac{\left(a+2\right)\left(a-9\right)}{a-7}\le0\)

Lập bảng xét dấu và giải ra ta được :

\(\left[{}\begin{matrix}a\le-2\\7< a\le9\end{matrix}\right.\)

Với \(a\le-2\)

\(\Leftrightarrow x^2-4x+5\le0\) ( Vô nghiệm )

Với \(7< a\le9\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-4x-4\ge0\\x^2-4x-6\le0\end{matrix}\right.\) \(\Leftrightarrow x\in\) [ \(2-\sqrt{10};2-2\sqrt{2}\) ) \(\cup\) ( \(2+2\sqrt{2};2+\sqrt{10}\) )

\(P=2-2\sqrt{2}+2+2\sqrt{2}=4\)

1. Biết bất phương trình \(\left\{{}\begin{matrix}x-1< 2x-3\\\frac{5-3x}{2}\le x-3\\3x\le x+5\end{matrix}\right.\) có tập nghiệm là một đoạn [a;b]. Hỏi a+b bằng: A.\(\frac{11}{2}\) B.8 C.\(\frac{9}{2}\) D.\(\frac{47}{10}\) 2. Số nghiệm nguyên của hệ bất phương trình \(\left\{{}\begin{matrix}6x+\frac{5}{7}>4x+7\\\frac{8x+3}{2}< 2x+25\end{matrix}\right.\) là; A.vô số B.4 C.8 ...
Đọc tiếp

1. Biết bất phương trình \(\left\{{}\begin{matrix}x-1< 2x-3\\\frac{5-3x}{2}\le x-3\\3x\le x+5\end{matrix}\right.\) có tập nghiệm là một đoạn [a;b]. Hỏi a+b bằng:

A.\(\frac{11}{2}\) B.8 C.\(\frac{9}{2}\) D.\(\frac{47}{10}\)

2. Số nghiệm nguyên của hệ bất phương trình \(\left\{{}\begin{matrix}6x+\frac{5}{7}>4x+7\\\frac{8x+3}{2}< 2x+25\end{matrix}\right.\) là;

A.vô số B.4 C.8 D.0

3. Tổng tất cả các nghiệm nguyên của bất phương trình \(\left\{{}\begin{matrix}5x-2< 4x+5\\x^2< \left(x+2\right)^2\end{matrix}\right.\) bằng:

A.21 B.27 C.28 D.29

4. Cho bất phương trình \(\left\{{}\begin{matrix}\left(1-x\right)^2\le8-4x+x^2\\\left(x+2\right)^3< x^3+6x^2+13x+9\end{matrix}\right.\)

Tổng số nghiệm nguyên lớn nhất và nghiệm nguyên nhỏ nhất của bất phương trình bằng:

A.2 B.3 C.6 D.7

5. Hệ bất phương trình \(\left\{{}\begin{matrix}2x-1>0\\x-m< 2\end{matrix}\right.\) có nghiệm khi và chỉ khi:

A.m<\(-\frac{3}{2}\) B.m\(\le\)\(-\frac{3}{2}\) C.m>\(-\frac{3}{2}\) D.m\(\ge-\frac{3}{2}\)

XIN GIẢI RA TỰ LUẬN GIÚP EM

2
NV
26 tháng 2 2020

1.

\(\left\{{}\begin{matrix}x>2\\\frac{5}{2}+3\le x+\frac{3}{2}x\\2x\le5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>2\\\frac{5}{2}x\ge\frac{11}{2}\\x\le\frac{5}{2}\end{matrix}\right.\) \(\Rightarrow\frac{11}{5}\le x\le\frac{5}{2}\)

\(\Rightarrow a+b=\frac{11}{5}+\frac{5}{2}=D\)

2.

\(\left\{{}\begin{matrix}6x-4x>7-\frac{5}{7}\\4x-2x< 25-\frac{3}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>\frac{22}{7}\\x< \frac{47}{4}\end{matrix}\right.\)

\(\Rightarrow\frac{22}{7}< x< \frac{47}{4}\Rightarrow x=\left\{4;5...;11\right\}\) có 8 giá trị

NV
26 tháng 2 2020

3.

\(\left\{{}\begin{matrix}5x-4x< 5+2\\x^2< x^2+4x+4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x< 7\\x>-1\end{matrix}\right.\)

\(\Rightarrow-1< x< 7\Rightarrow x=\left\{0;1;...;6\right\}\)

\(\Rightarrow\sum x=1+2+...+6=21\)

4.

\(\left\{{}\begin{matrix}x^2-2x+1\le8-4x+x^2\\x^3+6x^2+12x+8< x^3+6x^2+13x+9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x\le7\\x\ge-1\end{matrix}\right.\) \(\Rightarrow-1\le x\le\frac{7}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}x_{min}=-1\\x_{max}=3\end{matrix}\right.\) \(\Rightarrow S=2\)

5.

\(\left\{{}\begin{matrix}x>\frac{1}{2}\\x< m+2\end{matrix}\right.\)

Hệ đã cho có nghiệm khi và chỉ khi:

\(m+2>\frac{1}{2}\Rightarrow m>-\frac{3}{2}\)

1. tìm tất cả các giá trị thực của tham số m để hàm số y= \(\sqrt{x-m}-\sqrt{6-2x}\) có tập xác định là một đoạn trên trục số A. m=3 B=m<3 C. m>3 D. m<\(\frac{1}{3}\) 2. tìm tất cả các giá trị thực của hàm số y=\(\sqrt{m-2x}\)-\(\sqrt{x+1}\) có tập xác định là một đoạn trên trục số A.m<-2 B.m>2 C. m>-\(\frac{1}{2}\) D. m>-2 3. bất phương trình nào sau đây tương đương với...
Đọc tiếp

1. tìm tất cả các giá trị thực của tham số m để hàm số y= \(\sqrt{x-m}-\sqrt{6-2x}\) có tập xác định là một đoạn trên trục số

A. m=3 B=m<3 C. m>3 D. m<\(\frac{1}{3}\)

2. tìm tất cả các giá trị thực của hàm số y=\(\sqrt{m-2x}\)-\(\sqrt{x+1}\) có tập xác định là một đoạn trên trục số

A.m<-2 B.m>2 C. m>-\(\frac{1}{2}\) D. m>-2

3. bất phương trình nào sau đây tương đương với bất phương trình x+5>0

A. (x-1)2 (x+5) > 0 B. x2 (x+5) >0

C. \(\sqrt{x+5}\left(x+5\right)\)> 0 D. \(\sqrt{x+5}\left(x-5\right)\)>0

4. bất phương trình ax+b > 0 vô nghiệm khi

A.\(\left\{{}\begin{matrix}a\ne0\\b=0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

5.bất phương trình ax+b>0 có tập nghiệm R khi

A.\(\left\{{}\begin{matrix}a=0\\b>0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

6.bất phương trình ax+b \(\le\)0 vô nghiệm khi

A.\(\left\{{}\begin{matrix}a=0\\b>0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

7.tập nghiệm S của bất phương trình \(5x-1\ge\frac{2x}{5}+3\)

A. R B. (-∞; 2) C. (-\(\frac{5}{2}\); +∞) D. \([\frac{20}{23}\); +∞\()\)

MONG MỌI NGƯỜI GIẢI CHI TIẾT GIÚP EM Ạ TvT

0
6 tháng 11 2018

câu 4 \(\sqrt{x^2-2x}=\sqrt{2x-x^2}\Leftrightarrow x^2-2x=2x-x^2\)

\(\Leftrightarrow2\left(x^2-2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

câu C

Câu 5 \(x\left(x^2-1\right)\sqrt{x-1}=0\)

ĐK \(x\ge1\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\sqrt{x-1}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\\sqrt{x-1}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nh\right)\\x=-1\left(l\right)\end{matrix}\right.\)

vậy pt có 1 nghiệm

câu B

1. bất phương trình \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\) có bao nhiêu nghiệm nguyên lớn hơn -10 A.4 B.5 C.9 D.10 2. tổng các nghiệm của bất phương trình x(2-x) ≥ x(7-x) - 6(x-1) trên đoạn \([-10;10]\) A. 5 B.6 C.21 D.40 3. tập nghiệm S của bất phương trình 5( x+1) - x( 7-x) > -2x A. R B. \(\left(-\frac{5}{2};+\infty\right)\) C.\(\left(-\infty;\frac{5}{2}\right)\) D. ϕ 4. Tập...
Đọc tiếp

1. bất phương trình \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\) có bao nhiêu nghiệm nguyên lớn hơn -10

A.4 B.5 C.9 D.10

2. tổng các nghiệm của bất phương trình x(2-x) ≥ x(7-x) - 6(x-1) trên đoạn \([-10;10]\)

A. 5 B.6 C.21 D.40

3. tập nghiệm S của bất phương trình 5( x+1) - x( 7-x) > -2x

A. R B. \(\left(-\frac{5}{2};+\infty\right)\) C.\(\left(-\infty;\frac{5}{2}\right)\) D. ϕ

4. Tập nghiệm S của bất phương trình x+\(\sqrt{x}< \left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)\)

A. (-∞;3) B. (3; +∞) C. [3; +∞) D. (-∞; 3]

5. tổng các nghiệm nguyên của bất phương trình \(\frac{x-2}{\sqrt{x-4}}\le\frac{4}{\sqrt{x-4}}\) bằng

A. 15 B. 26 C. 11 D. 0

6. bất phương trình (m2- 3m )x + m < 2- 2x vô nghiệm khi

A. m ≠1 B. m≠2 C. m=1 , m=2 D. m∈ R

7. có bao nhiêu giá trị thực của tham số m để bất phương trình ( m2 -m )x < m vô nghiệm

A. 0 B.1 C.2 D. vô số

8. gọi S là tập hợp tất cả các giá trị thực của tham số m để bất phương trình (m2 -m)x + m< 6x -2 vô nghiệm. tổng các phần tử trong S là

A. 0 B.1 C.2 D.3

9. tìm tất cả các giá trị thực của tham số m để bất phương trình m2( x-2) -mx +x+5 < 0 nghiệm đúng với mọi x∈ [-2018; 2]

A. m< \(\frac{7}{2}\) B. m=​ \(\frac{7}{2}\) C. m > \(\frac{7}{2}\) D. m ∈ R

10. tìm tất cả các giá trị thực của tham số m để bất phương trình m2 (x-2) +m+x ≥ 0 có nghiệm x ∈ [-1;2]

A. m≥ -2 B. m= -2 C. m ≥ -1 D. m ≤ -2

0
1 tháng 3 2018

|3x+4)/(x-2)| <=3

<=>|3 +10/(x-2) | <=3

10/(x-2) =t

<=> |3+t| <=3

9 +6t +t^2 <=9 <=> -6<=t <=0

10/(x-2) <=0 => x<2

10/(x-2) >=-6 <=>5/(x-2)>=-3

<=>5 <=-3(x-2) <=>3x <=10-5 =5 => x <=5/3

kết luận x<= 5/3

17 tháng 3 2020

a) \(\left|\frac{3x+4}{x-2}\right|< =3̸\) đk: x\(\ne\) 2

BPT \(\Leftrightarrow\) \(\left\{{}\begin{matrix}\frac{3x+4}{x-2}\ge-3\\\frac{3x+4}{x-2}\le3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\frac{3x+4}{x-2}+3\ge0\\\frac{3x+4}{x-2}-3\le0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}\frac{6x-2}{x-2}\ge0\\\frac{10}{x-2}\le0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}\left[{}\begin{matrix}x\le\frac{1}{3}\\x>2\end{matrix}\right.\\x< 2\end{matrix}\right.\Rightarrow}x\le\frac{1}{3}}\)

b) \(\left|\frac{2x-1}{x-3}\right|\ge1\) đk: x\(\ne\) 3

BPT \(\Leftrightarrow\left[{}\begin{matrix}\frac{2x-3}{x-3}\le-1\\\frac{2x-3}{x-3}\ge1\end{matrix}\right.\)

ta có:

+) \(\frac{2x-3}{x-3}\le-1\Leftrightarrow\frac{2x-3}{x-3}+1\le0\Leftrightarrow\frac{3x-6}{x-3}\le0\Leftrightarrow2\le x< 3\)

+) \(\frac{2x-3}{x-3}\ge1\Leftrightarrow\frac{2x-3}{x-3}-1\ge0\Leftrightarrow\frac{x}{x-3}\ge0\Leftrightarrow\left[{}\begin{matrix}x\le0\\x>3\end{matrix}\right.\)

vậy tập nghiệm là: \((-\infty;0]\cup[2;3)\cup(3;+\infty)\)

NV
8 tháng 3 2019

ĐKXĐ: \(-4\le x\le6\)

Do \(\sqrt{\left(x+4\right)\left(6-x\right)}\ge0\Rightarrow2\left(x+1\right)\ge0\Rightarrow x\ge-1\)

Khi đó, bình phương 2 vế ta được:

\(\left(x+4\right)\left(6-x\right)\le4\left(x+1\right)^2\)

\(\Rightarrow-x^2+2x+24\le4x^2+8x+4\)

\(\Rightarrow5x^2+6x-20\ge0\) \(\Rightarrow\left[{}\begin{matrix}x\le\frac{-3-\sqrt{109}}{5}\\x\ge\frac{-3+\sqrt{109}}{5}\end{matrix}\right.\)

Kết hợp điều kiện \(-4\le x\le6\)\(-1\le x\) ta được: \(\frac{-3+\sqrt{109}}{5}\le x\le6\)

\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=5\end{matrix}\right.\) \(\Rightarrow2a+3b=21\)

7 tháng 1 2020

@Akai Haruma cô giúp em với ạ