Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x^2+5y^2+8xy-2x+2y+2=0\)
=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)
=>\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
=>x=1 và y=-1
\(M=\left(1-1\right)^{2023}+\left(1-2\right)^{2024}+\left(-1+1\right)^{2025}=1\)
Đẳng thức: \(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Thay vào \(M=\left(x+y\right)^{2007}+\left(x-2\right)^{2008}+\left(y+1\right)^{2009}\) ta được:
\(M=\left(1-1\right)^{2007}+\left(1-2\right)^{2008}+\left(-1+1\right)^{2009}=\left(-1\right)^{2008}=1\)
Ta có:
\(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Leftrightarrow x^2+4x^2+y^2+4y^2+8xy-2x+2y+1+1=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+2y+1\right)+\left(4x^2+8xy+4y^2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2+\left(2x+2y\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2+4\left(x+y\right)^2=0\)
Mà: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y+1\right)^2\ge0\\4\left(x+y\right)^2\ge0\end{matrix}\right.\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2+4\left(x+y\right)^2\ge0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\\x=-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Thay giá trị x và y vào M ta có:
\(M=\left(x+y\right)^{2007}+\left(x-2\right)^{2008}+\left(y+1\right)^{2009}\)
\(M=\left(1-1\right)^{2007}+\left(1-2\right)^{2008}+\left(-1+1\right)^{2009}\)
\(M=0^{2007}+\left(-1\right)^{2008}+0^{2009}\)
\(M=\left(-1\right)^{2008}\)
\(M=1\)
Ta có : \(\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x+2=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-2\end{array}\right.\)
Vậy \(x\in\left\{1;-2\right\}\)
Đây giống bài lớp 6 hơn
\(4\left(x-1\right)^2-9\left(x+2\right)^2=0\)
\(\Leftrightarrow\left[2\left(x-1\right)\right]^2-\left[3\left(x+2\right)\right]^2=0\)
\(\Leftrightarrow\left[2\left(x-1\right)+3\left(x+2\right)\right]\left[2\left(x-1\right)-3\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(2x-2+3x+6\right)\left(2x-2-3x-6\right)=0\)
\(\Leftrightarrow\left(5x+4\right)\left(-x-8\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}5x+4=0\\-x-8=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{4}{5}\\x=-8\end{array}\right.\)
\(\left(x-2\right)\left(x-1\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=0\\x-1=0\\x^2+2=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=1\\x^2=-2\left(KTM\right)\end{array}\right.\)
Vậy \(S=\left(1;2\right)\)