Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-2\right)\left(x-1\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=0\\x-1=0\\x^2+2=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=1\\x^2=-2\left(KTM\right)\end{array}\right.\)
Vậy \(S=\left(1;2\right)\)
5.\(C\text{ó}x^2-12=0\Rightarrow x^2=12\Rightarrow x=\sqrt{12}ho\text{ặc}x=-\sqrt{12}\)
Mà x>0\(\Rightarrow x=\sqrt{12}\)
6.Vì x-y=4\(\Rightarrow\left(x-y\right)^2=x^2-2xy+y^2=x^2-10+y^2=4^2=16\Rightarrow x^2+y^2=26\)
Có \(\left(x+y\right)^2=x^2+2xy+y^2=26+10=36=6^2=\left(-6\right)^2\)
Vì xy>0 và x>0 =>y>0=>x+y>0=>x+y=6
7. \(3x^2+7=\left(x+2\right)\left(3x+1\right)\)
\(3x^2+7=3x^2+7x+2\)
\(3x^2+7-3x^2-7x-2=0\)
-7x+5=0
-7x=-5
\(x=\frac{5}{7}\)
8.\(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)
\(\left(2x+1\right)^2-\left(2x+4\right)^2=9\)
(2x+1-2x-4)(2x+1+2x+4)=9
-3(4x+5)=9
4x+5=-3
4x=-8
x=-2
Còn câu 9 và 10 để mình nghiên cứu đã
a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)
b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)
\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)
\(\left(2x-3\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(2x-3\right) \left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-3=0\\x-3=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{3}{2}\\x=3\\x=-3\end{array}\right.\)
= 3 giá trị
( x= 3//; -3;3) nếu ghi vào bài thi viết số 3 dc rùi
\(5x^2+5y^2+8xy-2x+2y+2=0\)
=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)
=>\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
=>x=1 và y=-1
\(M=\left(1-1\right)^{2023}+\left(1-2\right)^{2024}+\left(-1+1\right)^{2025}=1\)
Đẳng thức: \(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Thay vào \(M=\left(x+y\right)^{2007}+\left(x-2\right)^{2008}+\left(y+1\right)^{2009}\) ta được:
\(M=\left(1-1\right)^{2007}+\left(1-2\right)^{2008}+\left(-1+1\right)^{2009}=\left(-1\right)^{2008}=1\)
Ta có:
\(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Leftrightarrow x^2+4x^2+y^2+4y^2+8xy-2x+2y+1+1=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+2y+1\right)+\left(4x^2+8xy+4y^2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2+\left(2x+2y\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2+4\left(x+y\right)^2=0\)
Mà: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y+1\right)^2\ge0\\4\left(x+y\right)^2\ge0\end{matrix}\right.\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2+4\left(x+y\right)^2\ge0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\\x=-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Thay giá trị x và y vào M ta có:
\(M=\left(x+y\right)^{2007}+\left(x-2\right)^{2008}+\left(y+1\right)^{2009}\)
\(M=\left(1-1\right)^{2007}+\left(1-2\right)^{2008}+\left(-1+1\right)^{2009}\)
\(M=0^{2007}+\left(-1\right)^{2008}+0^{2009}\)
\(M=\left(-1\right)^{2008}\)
\(M=1\)
\(4\left(x-1\right)^2-9\left(x+2\right)^2=0\)
\(\Leftrightarrow\left[2\left(x-1\right)\right]^2-\left[3\left(x+2\right)\right]^2=0\)
\(\Leftrightarrow\left[2\left(x-1\right)+3\left(x+2\right)\right]\left[2\left(x-1\right)-3\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(2x-2+3x+6\right)\left(2x-2-3x-6\right)=0\)
\(\Leftrightarrow\left(5x+4\right)\left(-x-8\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}5x+4=0\\-x-8=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{4}{5}\\x=-8\end{array}\right.\)
thanks