Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha!!!
a. Sorry!!!
b.
Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:
ABD = EBD (BD là tia phân giác của ABE)
BD là cạnh chung
=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)
=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE
AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE
=> BD là đường trung trực của AE
c.
Xét tam giác AFD và tam giác ECD có:
DEC = DAF ( = 90 )
AD = ED (tam giác ABD = tam giác EBD)
ADF = EDC (2 góc đối đỉnh)
=> Tam giác AFD = Tam giác ECD (g.c.g)
=> DF = DC (2 cạnh tương ứng)
d.
Tam giác EDC vuông tại E
=> DC > DE (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)
mad DE = DA (tam giác ABD = tam giác EBD)
=> DC > DA
a, Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E ta có:
BD:cạnh chung; góc ABD= góc EBD(gt)
Do đó tam giác ABD=tam giác EBD(cạnh huyền - góc nhọn)
=> AB=EB; AD=ED(cặp cạnh tương ứng)
Vì AB=EB; AD=ED nên B là D nằm trên đường trung trực của AE
=> BD là đường trung trực của AE(đpcm)
b, Xét tam giác ADF và tam giác EDC ta có:
góc FAD=góc CED(=90độ);AD=ED(cmt); góc ADF=góc EDC(đối đỉnh)
Do đó tam giác ADF=tam giác EDC(g.c.g)
=> DF=DC(cặp cạnh tương ứng) (đpcm)
c, Xét tam giác DEC vuông tại E ta có:
DE<DC(do trong tam giác vuông cạnh huyền lớn nhất)
mà DE=DA=> DA<DC(đpcm)
d, Vì tam giác ADF=tam giác EDC(cm câu b)
=> AF=EC(cặp cạnh tương ứng)
Ta có: BF=BA+AF; BC=BE+EC
mà BA=BE;AF=EC(đã cm)
=> BF=BC
=> tam giác BCF cân tại B
mặc khác ta có: BA=BE(cm câu a)
=> tam giác ABE cân tại B
Xét tam giác BCF và tam giác ABE cân tại B ta có:
góc BAE=\(\dfrac{180^o-\text{góc}ABE}{2}\) ;góc BFC=\(\dfrac{180^o-\text{góc}FBC}{2}\)
=> góc BAE=góc BFC
=> AE//CF(do có 1 cặp góc bằng nhau ở vị trí đồng vị) (đpcm)
10 năm sau thì cha vẫn hơn con 24 tuổi
Ta có sơ đồ 10 năm sau :
Cha : |----|----|----|
Con : |----|
Tuổi con 10 năm sau là :
24: ( 3- 1 ) = 12 ( tuổi )
Tuổi con hiện nay là :
12 - 10 = 2 tuổi
Tuổi cha hiện nay là :
2 + 24 =26 ( tuổi )
Đáp số : .......
Sau 10 năm cha vẫn hơn con 24 tuổi.
=>Tuổi con 10 năm sau là: 24:(3-1)=12(tuổi)
Tuổi con hiện nay là: 12-10=2(tuổi)
Tuổi cha hiện nay là: 2+24=26(tuổi)
Đ/s:...
Bài này dễ như ăn cháo.
tự kẻ hình nha:3333
a) xét tam giác ABD và tam giác EBD có
ABD=EBD(gt)
BD chung
BAD=BED(=90 độ)
=> tam giác ABD= tam giác EBD(ch-gnh)
=> AB=BE( hai cạnh tương ứng)
đặt K là giao điểm của BD và AE
xét tam giác ABK và tam giác EBK có
AB=EB(cmt)
ABK=EBK(gt)
BK chung
=> tam giác ABK= tam giác EBK(cgc)
=> AK=EK( hai cạnh tương ứng)=> K là trung điểm của AE=> BD là trung tuyến AE
b) xét tam giác ABC và tam giác EBF có
ABE chung
AB=EB(cmt)
BAC=BEF(=90 độ)
=> tam giác ABC= tam giác EBF(gcg)
=> AC=EF( hai cạnh tương ứng)
từ tam giác ABD= tam giác EBD=> AD= ED( hai cạnh tương ứng)
ta có AC-AD=EF-ED=> DC=DF
c) áp dụng định lý pytago vào tam giác vuông DEC=> DC^2=ED^2+EC^2
=> DC^2> DE^2
mà ED=AD=> DC^2> AD^2=> DC>AD( DC,AD>0)
Hình bạn tự vẽ nhé
a. Xét hai tam giác vuông ABD và tam giác EBD có
góc ABD = góc EBD = 90độ
cạnh BD chung
góc ABD = góc EBD [ vì BD là pg góc B ]
Do đó ; tam giác ABD = tam giác EBD [ cạnh huyền - góc nhọn ]
\(\Rightarrow\)BA = BE nên B thuộc đường trung tuyến của AE
và DA = DE nên D thuộc đường trung tuyến của AE
\(\Rightarrow\)BD là đường trung tuyến của AE
b.Xét tam giác ADF và tam giác EDC có
góc DAF = góc DEC = 90độ
DA = DE [ theo câu a]
góc ADF = góc EDC [ đối đỉnh ]
Do đó ; tam giác ADF = tam giác EDC [ cạnh góc vuông - góc nhọn ]
\(\Rightarrow\)DF = DC [ cạnh tương ứng ]
c.Xét tam giác DEC vuông tại E nên
DE bé hơn DC
mà DE = AD [ theo câu a]
\(\Rightarrow\)AD bé hơn DC
học tốt
a_ cm tam giac ABD= tam giac BED ( ch-gn)--> BE=BA va AD=DE-> Bva D nam tren duong trung truc cua AE-> BD la duong trung truc AE
b_ cm tam giac DFA= tam giac DCE (g-c-g) DA=DE, Goc DAF= goc DEC (=90), ADF=EDC ( doi dinh)-> DF=DC
c_tu diem D den duong thang EC ta co
DE la duong vuong goc, DC la duong xien --> DE<DC ( quan he duong xien duong vuong goc)
ma DE=DA ( tam giac ABD= tam giacBED)
nen DA<DC
d) tu diem B den duong thang EF ta co :
BE la duong vuong goc , BF la duong xien--> BE<BF ( quan he duong xien duong vuong goc)
tu diem C den duong thang EF ta co
CE la duong vuong goc, CF la duong xien -> EC< CF (quan he duong xien duong vuong goc)
--> BE+EC < BF+CF
---> BC < BF+CF
ma BD+DC < BC ( bdt trong tam giac BDC )
nen BD+DC < BF+CF
xét tam giác ADB và tam giác EDB có
góc DAB = góc DEB =\(90^0\)
DB cạch chung
góc ABD=góc EBD ( BD là tia phân giác của góc B)
tam giác ADB = tam giác EBD ( cạnh huyền - góc nhọn )
suy ra AB = EB
gọi H là điểm giao nhau của AE và BD
xét tam giác AHB và tam giác EHB có
AB=BE
BH là cạnh chung
góc ABH = góc EBH ( bd là tia phân giác của góc B )
suy ra tam giác AHB = tam giác EHB ( c-g-c)
suy ra AH = HE
hay H là trung điểm của AE
suy ra góc AHB = góc EHB
mà AHB + EHB = \(180^0\)
AHB + EHB = AHB . 2 = \(180^0\)
AHB = EHB = \(180^0:2=90^0\)
suy ra BD là đường trung trực của AE
xét tam giác FAD và tam giác CED có
AD = ED ( tam giác ABD = tam giác EBD )
góc FDC = góc CDE ( hai góc đối đỉnh )
góc FAD = góc CED =\(90^0\)
Tam giác FAD = tam giác CED ( g-c-g )
suy ra DC = DF
áp dụng định lý pitago vào tam giác vuông FAD tại A
\(FD^2=FA^2+AD^2\)
mà FD , FA, AD đều lớn hơn 0
suy ra \(FD^2>AD^2\)
suy ra AD< FD
mà FD = DC
suy ra DC>AD