Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét Δ ABC có
\(AB^2+AC^2=7^2+24^2=49+576=625\left(cm\right)\)
\(BC^2=25^2=625\left(cm\right)\)
Vì \(625=625\). Nên \(BC^2=AB^2+AC^2\)
Vậy Δ ABC vuông tại A (định lí Py-ta-go đảo)
b) Xét Δ ABC có
\(AC^2=10^2=100\left(cm\right)\)
\(AB^2+AC^2=8^2+6^2=64+36=100\left(cm\right)\)
Vì \(100=100\). Nên \(AC^2=AB^2+BC^2\)
Vậy Δ ABC vuông tại B (định lí Py-ta-go đảo)
a) Ta có: \(6^2+8^2=36+64=100\)
\(10^2=100\)
\(\Rightarrow\)\(AB^2+AC^2=BC^2\)
\(\Rightarrow\)\(\Delta ABC\)vuông tại A
b) \(\Delta ABC\)\(\perp\)\(A\)
\(\Rightarrow\)\(\widehat{ABC}+\widehat{ACB}=90^0\) (1)
\(\Delta ABH\)\(\perp\)\(H\)
\(\Rightarrow\)\(\widehat{BAH}+\widehat{ABH}=90^0\) (2)
Từ (1) và (2) suy ra: \(\widehat{BAH}=\widehat{C}\) (đpcm)
a) Diện tích tam giác ABC (Heron)
\(S_{ABC}=\frac{1}{4}\sqrt{\left(AB+BC+AC\right)\left(AB+BC-AC\right)\left(BC+AC-AB\right)\left(AC+AB-BC\right)}\)
\(S_{ABC}=\frac{1}{4}\sqrt{\left(6+10+8\right)\left(6+10-8\right)\left(10+8-6\right)\left(8+6-10\right)}=24\left(cm^2\right)\)
b)Xét tam giác ABC có
\(BC^2=10^2=100\left(cm\right)\)
\(AB^2+AC^2=6^2+8^2=100\left(cm\right)\)
Vì 100cm=100cm
\(\Rightarrow BC^2=AB^2+AC^2\)
=> Tam giác ABC vuông tại A
Xét diện tích tam giác ABC thường \(S_{ABCt}=\frac{AH.BC}{2}\left(1\right)\)
Xét diện tích tam giác ABC vuông \(S_{ABCv}=\frac{AC.AB}{2}\left(2\right)\)
Từ (1) và (2)
\(\Leftrightarrow AH.BC=AB.AC\)
\(\Leftrightarrow AH.10=8.6\Leftrightarrow AH=4,8\left(cm\right)\)
Xét tam giác ABH vuông tại H
\(\Rightarrow BH^2=AB^2-AH^2\left(PYTAGO\right)\)
\(\Rightarrow BH=\sqrt{AB^2-AH^2}\)
\(\Rightarrow BH=\sqrt{6^2-13,3^2}=3,6\left(cm\right)\)
Xét tam giác ACH vuông tại H
\(\Rightarrow HC^2=AC^2-AH^2\left(PYTAGO\right)\)
\(\Rightarrow HC=\sqrt{AC^2-AH^2}\)
\(\Rightarrow HC=\sqrt{8^2-4,8^2}=6,4\left(cm\right)\)
c) Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABD=ΔHBD(cạnh huyền-góc nhọn)
a) Ta có: \(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=100\)
Do đó: \(BC^2=AB^2+AC^2\)(=100)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
Ta có:
\(AB^2+AC^2=8^2+6^2=64+36=100\left(cm\right)\)
\(BC^2=10^2=100\left(cm\right)\)
\(\Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A (định lý Pi-ta-go đảo)
Áp dụng định lý Pytago đảo ta có:
AB2+AC2=82+62=100
mà 102=100
⇒82+62=102hay AB2+AC2=BC2
vậy ABC là tam giác vuông tại A
A B C D E
a) Áp dụng định lí Py-ta-go cho \(\Delta ABC\)vuông tại A ta được :
\(\Leftrightarrow AB^2+AC^2=BC^2\)
\(\Leftrightarrow8^2+6^2=BC^2\)
\(\Leftrightarrow BC^2=100\)
\(\Leftrightarrow BC=10\left(cm\right)\)
Vậy \(BC=10cm\)
b) Xét \(\Delta CDA\)và \(\Delta CBA\)có :
\(\widehat{DAC}=\widehat{BAC}\left(=90^o\right)\)
\(AD=AB\)
Chung AC
\(\Rightarrow\Delta CDA=\Delta CBA\left(c-g-c\right)\)
\(\Rightarrow\hept{\begin{cases}\widehat{DCE}=\widehat{BCE}\\CD=BC\end{cases}}\)
Xét \(\Delta BEC\)và \(\Delta DEC\)có :
\(CD=BC\)
\(\widehat{DCE}=\widehat{BCE}\)
Chung CE
\(\Rightarrow\Delta BEC=\Delta DEC\left(c-g-c\right)\left(đpcm\right)\)
c) Ta có : \(AE=2cm\)
\(AC=6cm\)
\(\Rightarrow AE=\frac{1}{3}AC\) \(\Rightarrow CE=\frac{2}{3}AC\)
\(\Rightarrow\)CA là trung tuyến \(\Delta BCD\)
\(\Rightarrow\)E là trọng tâm của \(\Delta BCD\)
\(\Rightarrow\)DE đi qua trung điểm của BC ( đpcm )
Vậy ...
Cho mik hỏi là còn cách chứng minh phần c nào khác ko ?
Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=10cm\)
chọn D
Áp dụng định lí Pytago ta có
\(BC^2=AB^2+AC^2\\ =\sqrt{6^2+8^2}=\sqrt{36+64}=10\\ \Rightarrow D\)