Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có :\(BC^2=AB^2+AC^2=6^2+8^2=10^2\Leftrightarrow BC=10\)
b)
Dễ mà p áp dụng Pytago câu a, còn mấy câu kia mìh lm` biến vẽ hìh Cm qá p ơi.
Đáp án:
a) Vì ΔΔABC vuông tại A (Aˆ=90oA^=90o)
=> AB2+AC2=BC2AB2+AC2=BC2 (ĐL Pi-ta-go)
=> BC2=82+62=100BC2=82+62=100
=> BC=10BC=10cm
b) Vì AB = AD (gt)
mà A ∈∈ BD (gt)
=> A trung điểm BD (ĐN trung điểm)
=> CA trung tuyến BD (ĐN trung tuyến)
lại có: CA ⊥⊥ BD (AB ⊥⊥ AC do Aˆ=90oA^=90o)
=> ΔΔCBD cân tại C (dhnb)
=> BC = CD (ĐN ΔΔ cân)
và CA là phân giác của BCDˆBCD^ (t/c ΔΔ cân)
=> C1ˆ=C2ˆC1^=C2^ (ĐN tia p/g)
Xét ΔΔBEC và ΔΔDEC có:
BC = CD (cmt)
C1ˆ=C2ˆC1^=C2^ (cmt)
EC: cạnh chung
=> ΔΔBEC = ΔΔDEC (c.g.c)
c) Vì CE là trung tuyến của ΔΔBCD (cmt)
mà AEAC=26=13AEAC=26=13 (AE = 2cm, AC = 6cm)
=> E là trọng tâm ΔΔBCD (dhnb)
=> DE là trung tuyến ΔΔBCD (ĐN trọng tâm)
=> DE đi qua trung điểm của BC (ĐN trung tuyến)
a, Xét \(\Delta ABC\)vuông tại A có :
\(BC^2=AB^2+ AC^2\)
\(BC^2=8^2+6^2\)
\(BC^2=64+36\)
\(BC^2=100\)
\(BC=10\)(cm)
b, Xét \(\Delta ABE\)và \(\Delta BDE\)có :
\(AB=AD\)(gt)
\(\widehat{BAE}=\widehat{DAE}=90^o\)(gt)
AE là cạnh chung
=> \(\Delta ABE=\Delta BDE\)(c.g.c)
=> BE = DE
=> \(\widehat{E_1}=\widehat{E_2}\)
Ta có :
\(\widehat{E_1}+\widehat{E_3}=180^o\)(2 góc kề bù)
\(\widehat{E_2}+\widehat{E_4}=180^o\)(2 góc kề bù)
mà \(\widehat{E_1}=\widehat{E_2}\)(cmt)
=> \(\widehat{E_3}=\widehat{E_4}\)
Xét \(\Delta BEC\)và \(\Delta DEC\)có :
\(\widehat{E_3}=\widehat{E_4}\) (chứng minh trên)
EC là cạnh chung
BE = DE (chứng minh trên)
=> \(\Delta BEC\) = \(\Delta DEC\) (c.g.c )
a) Áp dụng định lý Py-ta-go: BC2=AB2+AC2=82+62=64+36=100 \(\Rightarrow\)BC=10
b) Xét tam giác ABC và tam giác ADC:BAC^=DAC^=90o; AB=AD; AC chung \(\Rightarrow\)tam giác ABC=ADC (2 cạnh góc vuông) \(\Rightarrow\)BC=DC
Xét tam giác ABE và ADE: BAE^=DAE^=90o; AB=AD; AE chung \(\Rightarrow\)tam giác ABE=ADE \(\Rightarrow\)BE=DE
Xét tam giác BEC và DEC: BC=DC; BE=DE; EC chung \(\Rightarrow\)tam giác BEC=DEC (cạnh_cạnh_cạnh)
c) Sorry bn, câu này mk ko bít làm T_T
a) Áp dụng định lý Py-ta-go: BC2= AB2+AC2= 82+62= 64+36= 100 \(\Rightarrow\)BC=10
b) Xét tam giác
a) Áp dụng định lí Py-ta-go cho \(\Delta ABC\)vuông tại A ta được :
\(\Leftrightarrow AB^2+AC^2=BC^2\)
\(\Leftrightarrow8^2+6^2=BC^2\)
\(\Leftrightarrow BC^2=100\)
\(\Leftrightarrow BC=10\left(cm\right)\)
Vậy \(BC=10cm\)
b) Xét \(\Delta CDA\)và \(\Delta CBA\)có :
\(\widehat{DAC}=\widehat{BAC}\left(=90^o\right)\)
\(AD=AB\)
Chung AC
\(\Rightarrow\Delta CDA=\Delta CBA\left(c-g-c\right)\)
\(\Rightarrow\hept{\begin{cases}\widehat{DCE}=\widehat{BCE}\\CD=BC\end{cases}}\)
Xét \(\Delta BEC\)và \(\Delta DEC\)có :
\(CD=BC\)
\(\widehat{DCE}=\widehat{BCE}\)
Chung CE
\(\Rightarrow\Delta BEC=\Delta DEC\left(c-g-c\right)\left(đpcm\right)\)
c) Ta có : \(AE=2cm\)
\(AC=6cm\)
\(\Rightarrow AE=\frac{1}{3}AC\) \(\Rightarrow CE=\frac{2}{3}AC\)
\(\Rightarrow\)CA là trung tuyến \(\Delta BCD\)
\(\Rightarrow\)E là trọng tâm của \(\Delta BCD\)
\(\Rightarrow\)DE đi qua trung điểm của BC ( đpcm )
Vậy ...
Cho mik hỏi là còn cách chứng minh phần c nào khác ko ?