K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2018

Chọn D.

Tam giác ABC vuông ở A và có góc  B ^ = 50 0 ⇒ A C B ^ = 90 0 − 50 0 = 40 0

Vì A C → ,   C B → = 180 0 − A C B ^ = 180 0 − 40 0 = 140 0 .

Câu 1: Số nghiệm là 1 nghiệm

Câu 4: B

Ghi cách làm dùm mình với á.😥

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

A. \(\sin A = \sin \,(B + C)\)

Ta có: \((\widehat A  + \widehat C) + \widehat B= {180^o}\)

\(\Rightarrow \sin \,(B + C) = \sin A\)

=> A đúng.

B. \(\cos A = \cos \,(B + C)\)

Sai vì \(\cos \,(B + C) =  - \cos A\)

C. \(\;\cos A > 0\) Không đủ dữ kiện để kết luận.

Nếu \({0^o} < \widehat A < {90^o}\) thì \(\cos A > 0\)

Nếu \({90^o} < \widehat A < {180^o}\) thì \(\cos A < 0\)

D. \(\sin A\,\, \le 0\)

Ta có \(S = \frac{1}{2}bc.\sin A > 0\). Mà \(b,c > 0\)

\( \Rightarrow \sin A > 0\)

=> D sai.

Chọn A

4 tháng 6 2017

Chọn D.

21 tháng 1 2018

Đáp án D

Ta có thể thấy ngay rằng các khẳng định A và C đều đúng.

là một vectơ chỉ phương của đường thẳng AH.

Vậy D là khẳng định sai.

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

19 tháng 5 2017

\(\widehat{B}=180^o-\left(40^o+120^o\right)=20^o\).
A C B 35 H
\(AH=AB.sinB=35.sin20^o\cong12cm.\)
\(\widehat{HCA}=180^o-120^o=60^o\).
\(AH=AC.sin60^o\Rightarrow AC=\dfrac{AH}{sin60}=\dfrac{12}{\dfrac{\sqrt{3}}{2}}=8\sqrt{3}\).
Áp dụng định lý Cô-sin:
\(BC=\sqrt{AB^2+AC^2-2.AB.AC.sinA}\)\(=\sqrt{35^2+\left(8\sqrt{3}\right)^2-2.35.8\sqrt{3}.cos40^o}\cong26cm\).
Vậy \(a=26cm;b=8\sqrt{3}cm,\)\(\widehat{B}=20^o\).

28 tháng 5 2019

Đáp án D

Ta có:

Ta thấy tam giác ABC cân tại đỉnh A. Do đó, AD đồng thời là đường cao của tam giác ABC nên các khẳng định A, B và C đều đúng.

Vậy khẳng định D sai.

3 tháng 3 2017

Chọn C.

Ta có :

 A đúng.

+ tanA + tanB + tanC = tanA.tanB.tanC -tanA(1 – tanBtanC) = tanB + tanC

  tan A = -tan(B + C). B đúng.

+ cotA + cotB + cotC = cotA.cotB.cotC cotA(cotBcotC – 1) = cotB + cotC

  tanA = cot(B + C). C sai.

 D đúng.